2,252 research outputs found

    Platelet actin: Sub-cellular distribution and association with profilin

    Get PDF

    Effect of 50 Hz Electromagnetic Fields on the Induction of Heat-Shock Protein Gene Expression in Human Leukocytes

    Get PDF
    Although evidence is controversial, exposure to environmental power-frequency magnetic fields is of public concern. Cells respond to some abnormal physiological conditions by producing cytoprotective heat-shock (or stress) proteins. In this study, we determined whether exposure to power-frequency magnetic fields in the range 0–100 μT rms either alone or concomitant with mild heating induced heat-shock protein gene expression in human leukocytes, and we compared this response to that induced by heat alone. Samples of human peripheral blood were simultaneously exposed to a range of magnetic-field amplitudes using a regimen that was designed to allow field effects to be distinguished from possible artifacts due to the position of the samples in the exposure system. Power-frequency magnetic-field exposure for 4 h at 37°C had no detectable effect on expression of the genes encoding HSP27, HSP70A or HSP70B, as determined using reverse transcriptase-PCR, whereas 2 h at 42°C elicited 10-, 5- and 12-fold increases, respectively, in the expression of these genes. Gene expression in cells exposed to power-frequency magnetic fields at 40°C was not increased compared to cells incubated at 40°C without field exposure. These findings and the extant literature suggest that power-frequency electromagnetic fields are not a universal stressor, in contrast to physical agents such as heat

    Photon-photon correlations and entanglement in doped photonic crystals

    Full text link
    We consider a photonic crystal (PC) doped with four-level atoms whose intermediate transition is coupled near-resonantly with a photonic band-gap edge. We show that two photons, each coupled to a different atomic transition in such atoms, can manifest strong phase or amplitude correlations: One photon can induce a large phase shift on the other photon or trigger its absorption and thus operate as an ultrasensitive nonlinear photon-switch. These features allow the creation of entangled two-photon states and have unique advantages over previously considered media: (i) no control lasers are needed; (ii) the system parameters can be chosen to cause full two-photon entanglement via absorption; (iii) a number of PCs can be combined in a network.Comment: Modified, expanded text; added reference

    Coupled cavities for enhancing the cross-phase modulation in electromagnetically induced transparency

    Get PDF
    We propose an optical double-cavity resonator whose response to a signal is similar to that of an Electromagnetically Induced Transparency (EIT) medium. A combination of such a device with a four-level EIT medium can serve for achieving large cross-Kerr modulation of a probe field by a signal field. This would offer the possibility of building a quantum logic gate based on photonic qubits. We discuss the technical requirements that are necessary for realizing a probe-photon phase shift of Pi caused by a single-photon signal. The main difficulty is the requirement of an ultra-low reflectivity beamsplitter and to operate a sufficiently dense cool EIT medium in a cavity.Comment: 10 pages, 5 figures, REVTeX, to appear in Phys. Rev. A (v2 - minor changes in discussion of experimental conditions

    Generalized contact process on random environments

    Full text link
    Spreading from a seed is studied by Monte Carlo simulation on a square lattice with two types of sites affecting the rates of birth and death. These systems exhibit a critical transition between survival and extinction. For time- dependent background, this transition is equivalent to those found in homogeneous systems (i.e. to directed percolation). For frozen backgrounds, the appearance of Griffiths phase prevents the accurate analysis of this transition. For long times in the subcritical region, spreading remains localized in compact (rather than ramified) patches, and the average number of occupied sites increases logarithmically in the surviving trials.Comment: 6 pages, 7 figure

    Supersymmetric CP Violation in BXsl+lB \to X_s l^+ l^- in Minimal Supergravity Model

    Full text link
    Direct CP asymmetries and the CP violating normal polarization of lepton in inclusive decay B \to X_s l^+ l^- are investigated in minimal supergravity model with CP violating phases. The contributions coming from exchanging neutral Higgs bosons are included. It is shown that the direct CP violation in branching ratio, A_{CP}^1, is of {\cal{O}}(10^{-3}) for l=e, \mu, \tau. The CP violating normal polarization for l=\mu can reach 0.5 percent when tan\beta is large (say, 36). For l=\tau and in the case of large \tan\beta, the direct CP violation in backward-forward asymmetry, A_{CP}^2, can reach one percent, the normal polarization of \tau can be as large as a few percent, and both are sensitive to the two CP violating phases, \phi_\mu and \phi_{A_0}, and consequently it could be possible to observe them (in particular, the normal polarization of \tau) in the future B factories.Comment: 14 pages, latex, 5 figure

    Data to identify key drivers of animal growth and carcass quality for temperate lowland sheep production systems

    Get PDF
    With the growing demand for animal-sourced foods and a serious concern over climate impacts associated with livestock farming, the sheep industry worldwide faces the formidable challenge of increasing the overall product supply while improving its resource use efficiency. As an evidence base for research to identify key drivers behind animal growth and carcass quality, longitudinal matched data of 741 ewes and 2978 lambs were collected at the North Wyke Farm Platform, a farm-scale grazing trial in Devon, UK, between 2011 and 2019. A subset of these data was subsequently analysed in a study to assess the feasibility of using a lamb's early-life liveweight as a predictor of carcass quality [1]. The data also have the potential to offer insight into key performance indicators (KPIs) for the sheep industry, or what variables farmers should measure and target to increase profitability

    Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry

    Full text link
    In this paper we examine the role of crystal chemistry factors in creating conditions for formation of magnetoelectric ordering in BiFeO3. It is generally accepted that the main reason of the ferroelectric distortion in BiFeO3 is concerned with a stereochemical activity of the Bi lone pair. However, the lone pair is stereochemically active in the paraelectric orthorhombic beta-phase as well. We demonstrate that a crucial role in emerging of phase transitions of the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order types belongs to the change of the degree of the lone pair stereochemical activity - its consecutive increase with the temperature decrease. Using the structural data, we calculated the sign and strength of magnetic couplings in BiFeO3 in the range from 945 C down to 25 C and found the couplings, which undergo the antiferromagnetic-ferromagnetic transition with the temperature decrease and give rise to the antiferromagnetic ordering and its delay in regard to temperature, as compared to the ferroelectric ordering. We discuss the reasons of emerging of the spatially modulated spin structure and its suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table

    Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems

    Get PDF
    We present a general discussion of the techniques of destabilizing dark states in laser-driven atoms with either a magnetic field or modulated laser polarization. We show that the photon scattering rate is maximized at a particular evolution rate of the dark state. We also find that the atomic resonance curve is significantly broadened when the evolution rate is far from this optimum value. These results are illustrated with detailed examples of destabilizing dark states in some commonly-trapped ions and supported by insights derived from numerical calculations and simple theoretical models.Comment: 14 pages, 10 figure
    corecore