480 research outputs found

    Two-loop matching of the dipole operators for bsγb \to s \gamma and bsgluonb \to s gluon

    Get PDF
    The order αs\alpha_s corrections to the Wilson coefficients of the dipole operators (O7,O8O_7,O_8) at the matching scale μ=mW\mu =m_W are a crucial ingredient for a complete next- to-leading logarithmic calculation of the branching ratio for bsγb \to s \gamma. Given the phenomenological relevance and the fact that this two-loop calculation has been done so far only by one group [1], we present a detailed re-calculation using a different method. Our results are in complete agreement with those in ref. [1].Comment: 24 pages, latex, 6 figures include

    Nucleation of a sodium droplet on C60

    Full text link
    We investigate theoretically the progressive coating of C60 by several sodium atoms. Density functional calculations using a nonlocal functional are performed for NaC60 and Na2C60 in various configurations. These data are used to construct an empirical atomistic model in order to treat larger sizes in a statistical and dynamical context. Fluctuating charges are incorporated to account for charge transfer between sodium and carbon atoms. By performing systematic global optimization in the size range 1<=n<=30, we find that Na_nC60 is homogeneously coated at small sizes, and that a growing droplet is formed above n=>8. The separate effects of single ionization and thermalization are also considered, as well as the changes due to a strong external electric field. The present results are discussed in the light of various experimental data.Comment: 17 pages, 10 figure

    A glassy contribution to the heat capacity of hcp 4^4He solids

    Full text link
    We model the low-temperature specific heat of solid 4^4He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature, T<ΘD/50T < \Theta_D/50. By introducing a cutoff energy in the two-level tunneling density of states, we can describe the excess specific heat observed in solid hcp 4^4He, as well as the low-temperature linear term in the specific heat. Agreement is found with recent measurements of the temperature behavior of both specific heat and pressure. These results suggest the presence of a very small fraction, at the parts-per-million (ppm) level, of two-level tunneling systems in solid 4^4He, irrespective of the existence of supersolidity.Comment: 11 pages, 4 figure

    The KASCADE-Grande Experiment and the LOPES Project

    Full text link
    KASCADE-Grande is the extension of the multi-detector setup KASCADE to cover a primary cosmic ray energy range from 100 TeV to 1 EeV. The enlarged EAS experiment provides comprehensive observations of cosmic rays in the energy region around the knee. Grande is an array of 700 x 700 sqm equipped with 37 plastic scintillator stations sensitive to measure energy deposits and arrival times of air shower particles. LOPES is a small radio antenna array to operate in conjunction with KASCADE-Grande in order to calibrate the radio emission from cosmic ray air showers. Status and capabilities of the KASCADE-Grande experiment and the LOPES project are presented.Comment: To appear in Nuclear Physics B, Proceedings Supplements, as part of the volume for the CRIS 2004, Cosmic Ray International Seminar: GZK and Surrounding

    Radio detection of cosmic ray air showers with LOPES

    Get PDF
    In the last few years, radio detection of cosmic ray air showers has experienced a true renaissance, becoming manifest in a number of new experiments and simulation efforts. In particular, the LOPES project has successfully implemented modern interferometric methods to measure the radio emission from extensive air showers. LOPES has confirmed that the emission is coherent and of geomagnetic origin, as expected by the geosynchrotron mechanism, and has demonstrated that a large scale application of the radio technique has great potential to complement current measurements of ultra-high energy cosmic rays. We describe the current status, most recent results and open questions regarding radio detection of cosmic rays and give an overview of ongoing research and development for an application of the radio technique in the framework of the Pierre Auger Observatory.Comment: 8 pages; Proceedings of the CRIS2006 conference, Catania, Italy; to be published in Nuclear Physics B, Proceedings Supplement

    A self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems

    Full text link
    Local-spin-density functional calculations may be affected by severe errors when applied to the study of magnetic and strongly-correlated materials. Some of these faults can be traced back to the presence of the spurious self-interaction in the density functional. Since the application of a fully self-consistent self-interaction correction is highly demanding even for moderately large systems, we pursue a strategy of approximating the self-interaction corrected potential with a non-local, pseudopotential-like projector, first generated within the isolated atom and then updated during the self-consistent cycle in the crystal. This scheme, whose implementation is totally uncomplicated and particularly suited for the pseudopotental formalism, dramatically improves the LSDA results for a variety of compounds with a minimal increase of computing cost.Comment: 18 pages, 14 figure

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
    corecore