8 research outputs found

    Recovery after PILP remineralization of dentin lesions created with two cariogenic acids

    No full text
    ObjectivesAcetate and lactate are important cariogenic acids produced by oral bacteria. They produced different residual dentin structures in artificial lesions of similar depth. We evaluated if such lesions responded in the same way to a polymer-induced-liquid-precursor (PILP) remineralization.DesignDentin blocks obtained from human third molars, divided into 6 groups (n=3). Blocks were demineralized with acetate (66h) or lactate (168h) buffer at pH 5.0 to create 140ÎĽm target lesion depths. A-DEM and L-DEM groups received no remineralization. Other groups were remineralized for 14days. 100ÎĽg/mL polyaspartate was added into the remineralizing buffer for A-PIL and L-PIL, whereas A-CAP and L-CAP were treated with the same solution but without polyaspartate. Cross-sectioned blocks were examined for shrinkage and AFM-topography. Line profiles of reduced elastic modulus (Er) were obtained by AFM-based nanoindentation across the lesion. Ultrastructures were examined with TEM.ResultsA-PIL and L-PIL recovered in shrinkage to the original height of the dentin and it appeared normal with tubules, with increases in Er at both outer flat and inner sloped zones. At the sloped zone, acetate lesions lost more Er but recovery rate after PILP was not statistically different from lactate lesions. A-CAP and L-CAP showed surface precipitates, significantly less recovery in shrinkage or Er as compared to PILP groups. TEM-ultrastructure of PILP groups showed similar structural and mineral components in the sloped zone for lesions produced by either acid.ConclusionsThe PILP process provided significant recovery of both structure and mechanical properties for artificial lesions produced with acetate or lactate

    Novel Small Molecules in the Treatment of Lymphomas

    No full text
    corecore