2,569 research outputs found

    Suppression and enhancement of the critical current in multiterminal S/N/S mesoscopic structures

    Full text link
    We analyse the measured critical current ImI_{m\text{}} in a mesoscopic 4-terminal S/N/S structure. The current through the S/N interface is shown to consist not only of the Josephson component IcsinâĄÏ•,I_{c}\sin \phi , but also a phase-coherent part IsgcosâĄÏ•I_{sg}\cos \phi of the subgap current. The current ImI_{m} is determined by the both components IcI_{c} and Isg,I_{sg}, and depends in a nonmonotonic way on the voltage VV between superconductors and normal reservoirs reaching a maximum at V≅Δ/eV\cong \Delta /e. The obtained theoretical resultas are in qualitative agreement with recent experimental data.Comment: 4 page, 3 figures. To be puplished in PRB Rapid co

    Trees with Given Stability Number and Minimum Number of Stable Sets

    Full text link
    We study the structure of trees minimizing their number of stable sets for given order nn and stability number α\alpha. Our main result is that the edges of a non-trivial extremal tree can be partitioned into n−αn-\alpha stars, each of size ⌈n−1n−α⌉\lceil \frac{n-1}{n-\alpha} \rceil or ⌊n−1n−α⌋\lfloor \frac{n-1}{n-\alpha}\rfloor, so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.Comment: v2: Referees' comments incorporate

    Bandgap properties of two-dimensional low-index photonic crystals

    Full text link
    We study the bandgap properties of two-dimensional photonic crystals created by a lattice of rods or holes conformed in a symmetric or asymmetric triangular structure. Using the plane-wave analysis, we calculate a minimum value of the refractive index contrast for opening both partial and full two-dimensional spectral gaps for both TM and TE polarized waves. We also analyze the effect of ellipticity of rods and holes and their orientation on the threshold value and the relative size of the bandgap.Comment: 5 pages, 6 figures, App. Phys. B. styl

    Final state interaction and B→KKB\to KK decays in perturbative QCD

    Get PDF
    We predict branching ratios and CP asymmetries of the B→KKB\to KK decays using perturbative QCD factorization theorem, in which tree, penguin, and annihilation contributions, including both factorizable and nonfactorizable ones, are expressed as convolutions of hard six-quark amplitudes with universal meson wave functions. The unitarity angle ϕ3=90o\phi_3= 90^o and the BB and KK meson wave functions extracted from experimental data of the B→KπB\to K\pi and ππ\pi\pi decays are employed. Since the B→KKB\to KK decays are sensitive to final-state-interaction effects, the comparision of our predictions with future data can test the neglect of these effects in the above formalism. The CP asymmetry in the B±→K±K0B^\pm\to K^\pm K^0 modes and the Bd0→K±K∓B_d^0\to K^\pm K^\mp branching ratios depend on annihilation and nonfactorizable amplitudes. The B→KKB\to KK data can also verify the evaluation of these contributions.Comment: 13 pages in latex file, 7 figures in ps file

    Finite size effects with variable range exchange coupling in thin-film Pd/Fe/Pd trilayers

    Full text link
    The magnetic properties of thin-film Pd/Fe/Pd trilayers in which an embedded ~1.5 A-thick ultrathin layer of Fe induces ferromagnetism in the surrounding Pd have been investigated. The thickness of the ferromagnetic trilayer is controlled by varying the thickness of the top Pd layer over a range from 8 A to 56 A. As the thickness of the top Pd layer decreases, or equivalently as the embedded Fe layer moves closer to the top surface, the saturated magnetization normalized to area and the Curie temperature decrease whereas the coercivity increases. These thickness-dependent observations for proximity-polarized thin-film Pd are qualitatively consistent with finite size effects that are well known for regular thin-film ferromagnets. The critical exponent ÎČ\beta of the order parameter (magnetization) is found to approach the mean field value of 0.5 as the thickness of the top Pd layer increases. The functional forms for the thickness dependences, which are strongly modified by the nonuniform exchange interaction in the polarized Pd, provide important new insights to understanding nanomagnetism in two-dimensions.Comment: 14 pages, 5 figures, submitted to JMM

    Magnetic dipole probes of the sd and pf shell crossing in the A=36,38 argon isotopes

    Full text link
    We have calculated the M1 strength distributions in the A=36,38 argon isotopes within large-scale shell model studies which consider valence nucleons in the sd and pf shells. While the M1 strength in 36Ar is well reproduced within the sd shell, the experimentally observed strong fragmentation of the M1 strength in 38Ar requires configuration mixing between the sd and the pf shells adding to our understanding of correlations across the N=20 shell gap.Comment: 14 pages, 8 figure

    Separated magnet yoke for permanent magnet linear generator for marine wave energy converters

    Get PDF
    In this paper the performance of a longitudinal flux permanent magnet linear generator (PMLG) for wave energy converters (WEC) is investigated. The influence of the number of slots per pole, phase q and the number of stator's winding sections are analysed. The power output and the cogging forces in the PMLG are calculated and reviewed with respect to the above design parameters. In addition, an optimised PMLG model is designed and simulated. Three-dimensional Finite Element Method (FEM) is used for solving the combined field and circuit equations of the generator.The PRIMaRE project

    Comparing levonorgestrel intrauterine system versus hysteroscopic resection in patients with postmenstrual spotting related to a niche in the caesarean scar (MIHYS NICHE trial) : Protocol of a randomised controlled trial

    Get PDF
    Funding This work was supported by National Key Research and Development Programme (2018YFC1002102), Research Project of Shanghai Health and Fitness Commission (201940012,20184Y0344)),Shanghai Municipal Key Clinical Specialty (shslczdzk01802), Medical Engineering Cross Funds from Shanghai Jiao Tong University (YG2017QN38, ZH2018QNA36, YG2021ZD31), Medical innovation research project of the 2020 'Science and Technology Innovation Action Plan' of Shanghai Science and Technology Commission (20Y11907700), and Clinical Science and Technology Innovation Project of Shanghai Hospital Development Center(SHDC22020216).Peer reviewedPublisher PD

    Velocity autocorrelation function of a Brownian particle

    Full text link
    In this article, we present molecular dynamics study of the velocity autocorrelation function (VACF) of a Brownian particle. We compare the results of the simulation with the exact analytic predictions for a compressible fluid from [6] and an approximate result combining the predictions from hydrodynamics at short and long times. The physical quantities which determine the decay were determined from separate bulk simulations of the Lennard-Jones fluid at the same thermodynamic state point.We observe that the long-time regime of the VACF compares well the predictions from the macroscopic hydrodynamics, but the intermediate decay is sensitive to the viscoelastic nature of the solvent.Comment: 7 pages, 6 figure
    • 

    corecore