78 research outputs found
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men â¤50y, men >50y, women â¤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (âĽ50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape
Infant Growth Trajectories and Lipid Levels in Adolescence: Evidence From a Chilean Infancy Cohort
Growth in early infancy is hypothesized to affect chronic disease risk factors later in life. To date, most reports draw on European-ancestry cohorts with few repeated observations in early infancy. We investigated the association between infant growth before 6 months and lipid levels in adolescents in a Hispanic/Latino cohort. We characterized infant growth from birth to 5 months in male (n = 311) and female (n = 285) infants from the Santiago Longitudinal Study (1991-1996) using 3 metrics: weight (kg), length (cm), and weight-for-length (g/cm). Superimposition by translation and rotation (SITAR) and latent growth mixture models (LGMMs) were used to estimate the association between infant growth characteristics and lipid levels at age 17 years. We found a positive relationship between the SITAR length velocity parameter before 6 months of age and high-density lipoprotein cholesterol levels in adolescence (11.5, 95% confidence interval; 3.4, 19.5), indicating higher high-density lipoprotein cholesterol levels occurring with faster length growth. The strongest associations from the LGMMs were between higher low-density lipoprotein cholesterol and slower weight-for-length growth, following a pattern of associations between slower growth and adverse lipid profiles. Further research in this window of time can confirm the association between early infant growth as an exposure and adolescent cardiovascular disease risk factors
Excavating youth justice reform: historical mapping and speculative prospects
This article analytically excavates youth justice reform (in England and Wales) by situating it in historical context, critically reviewing the competing rationales that underpin it and exploring the overarching social, economic, and political conditions within which it is framed. It advances an argument that the foundations of a recognisably modern youth justice system had been laid by the opening decade of the 20th Century and that youth justice reform in the postâSecond World War period has broadly been structured over four key phases. The core contention is that historical mapping facilitates an understanding of the unreconciled rationales and incoherent nature of youth justice reform to date, while also providing a speculative sense of future prospects
Dynamic relationships between body fat and circulating adipokine levels from adolescence to young adulthood: The Santiago Longitudinal Study
Background and aims: Adipose tissue secretes adipokines such as adiponectin and leptin, playing important roles in energy metabolism. The longitudinal associations between such adipokines and body fat accumulation have not been established, especially during adolescence and young adulthood and in diverse populations. The study aims to assess the longitudinal association between body fat measured with dual X-ray absorptiometry and plasma adipokines from adolescence to young adulthood. Methods and results: Among Hispanic/Latino participants (N = 537) aged 16.8 (SD: 0.3) years of the Santiago Longitudinal Study, we implemented structural equation modeling to estimate the sex-specific associations between adiposity (body fat percent (BF%) and proportion of trunk fat (PTF)) and adipokines (adiponectin and leptin levels) during adolescence (16 y) and these values after 6 years of follow-up (22 y). In addition, we further investigated whether the associations differed by baseline insulin resistance (IR) status. We found evidence for associations between 16 y BF% and 22 y leptin levels (β (SE): 0.58 (0.06) for females; 0.53 (0.05) for males), between 16 y PTF and 22 y adiponectin levels (β (SE): â0.31 (0.06) for females; â0.18 (0.06) for males) and between 16 y adiponectin levels and 22 y BF% (β (SE): 0.12 (0.04) for both females and males). Conclusion: We observed dynamic relationships between adiposity and adipokines levels from late adolescence to young adulthood in a Hispanic/Latino population further demonstrating the importance of this period of the life course in the development of obesity
Genome-wide association study identifying novel variant for fasting insulin and allelic heterogeneity in known glycemic loci in Chilean adolescents: The Santiago Longitudinal Study
Background: The genetic underpinnings of glycemic traits have been understudied in adolescent and Hispanic/Latino (H/L) populations in comparison to adults and populations of European ancestry. Objective: To identify genetic factors underlying glycemic traits in an adolescent H/L population. Methods: We conducted a genome-wide association study (GWAS) of fasting glucose (FG) and fasting insulin (FI) in H/L adolescents from the Santiago Longitudinal Study. Results: We identified one novel variant positioned in the CSMD1 gene on chromosome 8 (rs77465890, effect allele frequency = 0.10) that was associated with FI (β = â0.299, SE = 0.054, p = 2.72Ă10â8) and was only slightly attenuated after adjusting for body mass index z-scores (β = â0.252, SE = 0.047, p = 1.03Ă10â7). We demonstrated directionally consistent, but not statistically significant results in African and Hispanic adults of the Population Architecture Using Genomics and Epidemiology Consortium. We also identified secondary signals for two FG loci after conditioning on known variants, which demonstrate allelic heterogeneity in well-known glucose loci. Conclusion: Our results exemplify the importance of including populations with diverse ancestral origin and adolescent participants in GWAS of glycemic traits to uncover novel risk loci and expand our understanding of disease aetiology
Leukocyte traits and exposure to ambient particulate matter air pollution in the womenâs health initiative and atherosclerosis risk in communities study
BACKGROUND: Inflammatory effects of ambient particulate matter (PM) air pollution exposures may underlie PM-related increases in cardiovascular disease risk and mortality, although evidence of PM-associated leukocytosis is inconsistent and largely based on small, cross-sectional, and/or unrepresentative study populations. OBJECTIVES: Our objective was to estimate PMâleukocyte associations among U.S. women and men in the Womenâs Health Initiative and Atherosclerosis Risk in Communities study (n = 165,675). METHODS: We based the PMâleukocyte estimations on up to four study visits per participant, at which peripheral blood leukocytes and geocoded address-specific concentrations of PM ⤠10, â¤2:5, and 2:5â10 lm in diameter (PM10, PM2:5, and PM2:5â10, respectively) were available. We multiply imputed missing data using chained equations and estimated PMâleukocyte count associations over daily to yearly PM exposure averaging periods using center-specific, linear, mixed, longitudinal models weighted for attrition and adjusted for sociodemographic, behavioral, meteorological, and geographic covariates. In a subset of participants with available data (n = 8,457), we also estimated PMâleukocyte proportion associations in compositional data analyses. RESULTS: We found a 12 cells=lL (95% confidence interval: â9, 33) higher leukocyte count, a 1.2% (0.6%, 1.8%) higher granulocyte proportion, and a â1:1% (â1:9%, â0:3%) lower CD8+ T-cell proportion per 10-lg=m3 increase in 1-month mean PM2:5. However, shorter-duration PM10 exposures were inversely and only modestly associated with leukocyte count. DISCUSSION: The PM2:5 âleukocyte estimates, albeit imprecise, suggest that among racially, ethnically, and environmentally diverse U.S. populations, sustained, ambient exposure to fine PM may induce subclinical, but epidemiologically important, inflammatory effects. https://doi.org/10.1289/EHP5360
Epigenetically mediated electrocardiographic manifestations of sub-chronic exposures to ambient particulate matter air pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study
Background: Short-duration exposure to ambient particulate matter (PM) air pollution is associated with cardiac autonomic dysfunction and prolonged ventricular repolarization. However, associations with sub-chronic exposures to coarser particulates are relatively poorly characterized as are molecular mechanisms underlying their potential relationships with cardiovascular disease. Materials and methods: We estimated associations between monthly mean concentrations of PM < 10 Îźm and 2.5â10 Îźm in diameter (PM10; PM2.5-10) with time-domain measures of heart rate variability (HRV) and QT interval duration (QT) among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities Study (nHRV = 82,107; nQT = 76,711). Then we examined mediation of the PM-HRV and PM-QT associations by DNA methylation (DNAm) at three Cytosine-phosphate-Guanine (CpG) sites (cg19004594, cg24102420, cg12124767) with known sensitivity to monthly mean PM concentrations in a subset of the participants (nHRV = 7,169; nQT = 6,895). After multiply imputing missing PM, electrocardiographic and covariable data, we estimated associations using attrition-weighted, linear, mixed, longitudinal models adjusting for sociodemographic, behavioral, meteorological, and clinical characteristics. We assessed mediation by estimating the proportions of PM-HRV and PM-QT associations mediated by DNAm. Results: We found little evidence of PM-HRV association, PM-QT association, or mediation by DNAm. Conclusions: The findings suggest that among racially/ethnically and environmentally diverse U.S. populations, sub-chronic exposures to coarser particulates may not exert appreciable, epigenetically mediated effects on cardiac autonomic function or ventricular repolarization. Further investigation in better-powered studies is warranted, with additional focus on shorter duration exposures to finer particulates and non-electrocardiographic outcomes among relatively susceptible populations
Genetic determinants of metabolic biomarkers and their associations with cardiometabolic traits in Hispanic/Latino adolescents
Background: Metabolic regulation plays a significant role in energy homeostasis, and adolescence is a crucial life stage for the development of cardiometabolic disease (CMD). This study aims to investigate the genetic determinants of metabolic biomarkersâadiponectin, leptin, ghrelin, and orexinâand their associations with CMD risk factors. Methods: We characterized the genetic determinants of the biomarkers among Hispanic/Latino adolescents of the Santiago Longitudinal Study (SLS) and identified the cumulative effects of genetic variants on adiponectin and leptin using biomarker polygenic risk scores (PRS). We further investigated the direct and indirect effect of the biomarker PRS on downstream body fat percent (BF%) and glycemic traits using structural equation modeling. Results: We identified putatively novel genetic variants associated with the metabolic biomarkers. A substantial amount of biomarker variance was explained by SLS-specific PRS, and the prediction was improved by including the putatively novel loci. Fasting blood insulin and insulin resistance were associated with PRS for adiponectin, leptin, and ghrelin, and BF% was associated with PRS for adiponectin and leptin. We found evidence of substantial mediation of these associations by the biomarker levels. Conclusions: The genetic underpinnings of metabolic biomarkers can affect the early development of CMD, partly mediated by the biomarkers. Impact: This study characterized the genetic underpinnings of four metabolic hormones and investigated their potential influence on adiposity and insulin biology among Hispanic/Latino adolescents.Fasting blood insulin and insulin resistance were associated with polygenic risk score (PRS) for adiponectin, leptin, and ghrelin, with evidence of some degree of mediation by the biomarker levels. Body fat percent (BF%) was also associated with PRS for adiponectin and leptin. This provides important insight on biological mechanisms underlying early metabolic dysfunction and reveals candidates for prevention efforts.Our findings also highlight the importance of ancestrally diverse populations to facilitate valid studies of the genetic architecture of metabolic biomarker levels
Associations between DNA methylation and BMI vary by metabolic health status: a potential link to disparate cardiovascular outcomes
Background: Body mass index (BMI), a well-known risk factor for poor cardiovascular outcomes, is associated with differential DNA methylation (DNAm). Similarly, metabolic health has also been associated with changes in DNAm. It is unclear how overall metabolic health outside of BMI may modify the relationship between BMI and methylation profiles, and what consequences this may have on downstream cardiovascular disease. The purpose of this study was to identify cytosine-phosphate-guanine (CpG) sites at which the association between BMI and DNAm could be modified by overall metabolic health. Results: The discovery study population was derived from three Womenâs Health Initiative (WHI) ancillary studies (n = 3977) and two Atherosclerosis Risk in Communities (ARIC) ancillary studies (n = 3520). Findings were validated in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort (n = 1200). Generalized linear models regressed methylation β values on the interaction between BMI and metabolic health Z score (BMI Ă MHZ) adjusted for BMI, MHZ, cell composition, chip number and location, study characteristics, top three ancestry principal components, smoking, age, ethnicity (WHI), and sex (ARIC). Among the 429,566 sites examined, differential associations between BMI Ă MHZ and DNAm were identified at 22 CpG sites (FDR q < 0.05), with one site replicated in MESA (cg18989722, in the TRAPPC9 gene). Three of the 22 sites were associated with incident coronary heart disease (CHD) in WHI. For each 0.01 unit increase in DNAm β value, the risk of incident CHD increased by 9% in one site and decreased by 6â10% in two sites over 25 years. Conclusions: Differential associations between DNAm and BMI by MHZ were identified at 22 sites, one of which was validated (cg18989722) and three of which were predictive of incident CHD. These sites are located in several genes related to NF-kappa-B signaling, suggesting a potential role for inflammation between DNA methylation and BMI-associated metabolic health
Methylome-wide association study of central adiposity implicates genes involved in immune and endocrine systems
Aim: We conducted a methylome-wide association study to examine associations between DNA methylation in whole blood and central adiposity and body fat distribution, measured as waist circumference, waist-to-hip ratio and waist-to-height ratio adjusted for body mass index, in 2684 African-American adults in the Atherosclerosis Risk in Communities study. Materials & methods: We validated significantly associated cytosine-phosphate-guanine methylation sites (CpGs) among adults using the Women's Health Initiative and Framingham Heart Study participants (combined n = 5743) and generalized associations in adolescents from The Raine Study (n = 820). Results & conclusion: We identified 11 CpGs that were robustly associated with one or more central adiposity trait in adults and two in adolescents, including CpG site associations near TXNIP, ADCY7, SREBF1 and RAP1GAP2 that had not previously been associated with obesity-related traits
- âŚ