3 research outputs found

    Effects of disorder on the wave front depinning transition in spatially discrete systems

    Get PDF
    Pinning and depinning of wave fronts are ubiquitous features of spatially discrete systems describing a host of phenomena in physics, biology, etc. A large class of discrete systems is described by overdamped chains of nonlinear oscillators with nearest-neighbor coupling and subject to random external forces. The presence of weak randomness shrinks the pinning interval and it changes the critical exponent of the wave front depinning transition from 1/2 to 3/2. This effect is derived by means of a recent asymptotic theory of the depinning transition, extended to discrete drift-diffusion models of transport in semiconductor superlattices and confirmed by numerical calculations.Comment: 4 pages, 3 figures, to appear as a Rapid Commun. in Phys. Rev.

    A bidomain threshold model of propagating calcium waves

    Get PDF
    We present a bidomain fire-diffuse-fire model that facilitates mathematical analysis of propagating waves of elevated intracellular calcium (Ca) in living cells. Modelling Ca release as a threshold process allows the explicit construction of travelling wave solutions to probe the dependence of Ca wave speed on physiologically important parameters such as the threshold for Ca release from the endoplasmic reticulum (ER) to the cytosol, the rate of Ca resequestration from the cytosol to the ER, and the total [Ca] (cytosolic plus ER). Interestingly, linear stability analysis of the bidomain fire-diffuse-fire model predicts the onset of dynamic wave instabilities leading to the emergence of Ca waves that propagate in a back-and-forth manner. Numerical simulations are used to confirm the presence of these so-called "tango waves" and the dependence of Ca wave speed on the total [Ca]. The original publication is available at www.springerlink.com (Journal of Mathematical Biology
    corecore