4 research outputs found

    Constructing Infinite Particle Spectra

    Get PDF
    We propose a general construction principle which allows to include an infinite number of resonance states into a scattering matrix of hyperbolic type. As a concrete realization of this mechanism we provide new S-matrices generalizing a class of hyperbolic ones, which are related to a pair of simple Lie algebras, to the elliptic case. For specific choices of the algebras we propose elliptic generalizations of affine Toda field theories and the homogeneous sine-Gordon models. For the generalization of the sinh-Gordon model we compute explicitly renormalization group scaling functions by means of the c-theorem and the thermodynamic Bethe ansatz. In particular we identify the Virasoro central charges of the corresponding ultraviolet conformal field theories.Comment: 7 pages Latex, 7 figures (typo in figure 3 corrected

    On the Construction of Quantum Field Theories with Factorizing S-Matrices

    Full text link
    The subject of this thesis is a novel construction method for interacting relativistic quantum field theories on two-dimensional Minkowski space. The input in this construction is not a classical Lagrangian, but rather a prescribed factorizing S-matrix, i.e. the inverse scattering problem for such quantum field theories is studied. For a large class of factorizing S-matrices, certain associated quantum fields, which are localized in wedge-shaped regions of Minkowski space, are constructed explicitely. With the help of these fields, the local observable content of the corresponding model is defined and analyzed by employing methods from the algebraic framework of quantum field theory. The abstract problem in this analysis amounts to the question under which conditions an algebra of wedge-localized observables can be used to generate a net of local observable algebras with the right physical properties. The answer given here uses the so-called modular nuclearity condition, which is shown to imply the existence of local observables and the Reeh-Schlieder property. In the analysis of the concrete models, this condition is proven for a large family of S-matrices, including the scattering operators of the Sinh-Gordon model and the scaling Ising model as special examples. The so constructed models are then investigated with respect to their scattering properties. They are shown to solve the inverse scattering problem for the considered S-matrices, and a proof of asymptotic completeness is given.Comment: PhD thesis, Goettingen university, 2006 (advisor: D. Buchholz) 153 pages, 10 figure
    corecore