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Constructing Infinite Particle Spectra

O.A. Castro-Alvaredo and A. Fring
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

(February 1, 2008)

We propose a general construction principle which allows
to include an infinite number of resonance states into a scat-
tering matrix of hyperbolic type. As a concrete realization
of this mechanism we provide new S-matrices generalizing a
class of hyperbolic ones, which are related to a pair of simple
Lie algebras, to the elliptic case. For specific choices of the al-
gebras we propose elliptic generalizations of affine Toda field
theories and the homogeneous sine-Gordon models. For the
generalization of the sinh-Gordon model we compute explic-
itly renormalization group scaling functions by means of the c-
theorem and the thermodynamic Bethe ansatz. In particular
we identify the Virasoro central charges of the corresponding
ultraviolet conformal field theories.

PACS numbers: 11.55.Ds, 11.10.Hi, 11.10.Kk, 05.70.Jk

I. INTRODUCTION

Treating quantum field theories in 1+1 dimensions as a
test laboratory for realistic theories in higher dimensions,
this paper is concerned with the general question of how
to enlarge a given finite particle spectrum of a theory to
an infinite one.

In general the bootstrap [1], which is the construction
principle for the scattering matrix, is assumed to close
after a finite number of steps, which means it involves
a finite number of particles. However, from a physical
as well as from a mathematical point of view, it ap-
pears to be natural to extend the construction in such
a way that it would involve an infinite number of parti-
cles. The physical motivation for this are string theories,
which admit an infinite particle spectrum. Mathemati-
cally the infinite bootstrap would be an analogy to infi-
nite dimensional groups, in the sense that two entries of
the S-matrix are combined into a third, which is again a
member of the same infinite set. It appears to us that
it is impossible to construct an infinite bootstrap system
involving asymptotic states and find the mathematical
analogue to infinite groups in this sense (see also foot-
note 2 and the paragraph after figure 1). However, it
is possible to introduce an infinite number of unstable
particles into the spectrum. Scattering matrices which
would allow such type of interpretation have occurred in
the literature [3–5], although only in the latter paper a
reference to unstable particles has been made. In [4,5]
these matrices were found to be expressible in terms of
elliptic functions, a feature very common in the context of
lattice models, e.g. [7]. The main purpose of this paper is
to suggest a general construction principle for such type

of S-matrices starting from some known theory with a
finite particle spectrum of a special, albeit quite generic,
form. As particular examples we provide elliptic gener-
alizations of scattering matrices related to a pair of Lie
algebras [6], which contain the affine Toda S-matrices [8]
and homogeneous sine-Gordon S-matrices [9] for partic-
ular choices of the algebras.

Our paper is organized as follows: In section II we
provide a general principle for the construction of scat-
tering matrices which involve an infinite number of un-
stable particles and present some explicit examples. In
section III we construct renormalization group (RG) scal-
ing functions by means of the c-theorem and the thermo-
dynamic Bethe ansatz (TBA) for the generalization of
the sinh-Gordon model. Our conclusions and an outlook
towards open problems are stated in section IV.

II. CONSTRUCTION PRINCIPLE

Let us consider the huge class of two-particle S-
matrices, which describe the scattering between particles
of type a and b as a function of the rapidity difference θ,
of the general form1

Sab(θ) = Smin
ab (θ)SCDD

ab (θ) . (1)

Here Smin
ab (θ) denotes the so-called minimal S-matrix

which satisfies the consistency relations [1], namely uni-
tarity, crossing and the fusing bootstrap equations and
possibly possess poles on the imaginary axis in the sheet
0 ≤ Im θ ≤ π, which is physical for asymptotic states.
The CDD-factor [2], referred to as SCDD

ab (θ), also sat-
isfies these equations, but has its poles in the sheet
−π ≤ Im θ ≤ 0, which is the “physical one” for resonance
states. SCDD

ab (θ) might depend on additional constants
like the effective coupling constant or a resonance param-
eter. A simple prescription to introduce now an infinite
number of resonance poles is to replace the CDD-factor
in (1) by

ŜCDD
ab (θ, N) =

N
∏

n=−N

SCDD
ab (θ + nω) , (2)

1Exceptions to this factorization are for instance the scatter-
ing matrices of affine Toda field theories related to non-simply
laced Lie algebras, which was first noted in [10].
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where ω is taken to be real. By construction the new
S-matrix, Ŝab(θ, N) = Smin

ab (θ)ŜCDD
ab (θ, N) satisfies the

bootstrap consistency equations and possible poles in the
sheet −π ≤ Im θ ≤ 0 have now been duplicated 2N times
within this sheet, such that they admit an interpretation
as unstable particles. Therefore, when N → ∞ we have
an infinite number of resonance poles. Since, as a conse-
quence of crossing and unitarity, the S-matrix is known
to be a 2πi-periodic function, a property shared indi-
vidually by SCDD

ab (θ, N), we expect to recover a double
periodic function in the limit N → ∞

lim
N→∞

ŜCDD
ab (θ, N) = lim

N→∞
ŜCDD

ab (θ + µ2πi + νω, N) (3)

for µ, ν ∈ Z. At this stage it is not clear whether the
prescription (2) is meaningful at all, in the sense that it
leads to meaningful quantum field theories, and in par-
ticular one has to be concerned about the convergence
of the infinite product in (3). Since limN→∞ ŜCDD

ab (θ, N)
is a double periodic function we expect that it is some-
how related to elliptic functions (see e.g. [11] for their
properties). Let us therefore now look concretely at the
building blocks which can be used to make up the entire
scattering matrix in the non-elliptic case, when backscat-
tering is absent. In that case the S-matrices are diagonal
and known [12] to be of the general form

Sab(θ) =
∏

x∈A

{x}σ
θ =

∏

x∈A

tanh(θ − iπx + σ)/2

tanh(θ + iπx + σ)/2
, (4)

with x ∈ Q and σ ∈ R. A specific theory is then char-
acterized by the finite set A2. This means, if we demon-
strate that the prescription (3) is meaningful for each
individual building block {x}σ

θ as defined in (4), in par-
ticular we need to demonstrate the convergence of the
infinite product, we have established that it is sensible
for the entire scattering matrix. For this purpose we
note the identity

{x}σ
θ,ℓ :=

∞
∏

n=−∞

{x}σ
θ+nω =

sc θ− dn θ+

sc θ+ dn θ−
. (5)

Here we abbreviated θ± = (θ ± iπx + σ)iKℓ/π and used
the Jacobian elliptic functions in the standard notation
pq(z) with p,q ∈ {s,c,d,n} (see e.g. [11]). The quarter
periods Kℓ depending on the parameter ℓ ∈ [0, 1] are
defined in the usual way through the complete elliptic
integral

Kℓ =

∫ π/2

0

(1 − ℓ sin2 θ)−1/2dθ . (6)

2The fact that x ∈ Q together with the bootstrap leads
to a finite set A and therefore a finite number of asymptotic
states. Taking instead x ∈ R could possibly lead to an infinite
number, but a consistent closure of the bootstrap is not known
up to now.

The period of {x}σ
θ,ℓ is chosen to be ω = πK(1−ℓ)/Kℓ.

The last identity in (5) is easily derived from the infinite
product representations of the elliptic functions which
can be found in various places as for instance in [11]

sc x = k tan
πx

2Kℓ

∞
∏

n=1

1 − 2q2n cos(πx/Kℓ) + q4n

1 + 2q2n cos(πx/Kℓ) + q4n
, (7)

dn x = k−1
∞
∏

n=1

1 + 2q2n−1 cos(πx/Kℓ) + q4n−2

1 − 2q2n−1 cos(πx/Kℓ) + q4n−2
, (8)

with k = (1−ℓ)−1/4 and q = exp(−ω). Recalling the well
known limits limℓ→0 Kℓ = π/2 and limℓ→0 K(1−ℓ) = ∞
we obtain

lim
ℓ→0

{x}σ
θ,ℓ = {x}σ

θ . (9)

This means in the limit ℓ → 0 the elliptic S-matrix Ŝab(θ)
collapses to the hyperbolic one, that is Sab(θ). Notice
that due to the general identity pr(x)/ qr(x) = pq(x), we
could also write (5) in terms of various other combina-
tions of elliptic functions. For instance replacing sc by
sn / cn is probably most intuitive, since it allows an alter-
native prescription to (3) for the construction of elliptic
scattering matrices: Replace sinh → sn, cosh → cn and
correct the consistency equations by a factor dn, which
reduces always to 1 in the hyperbolic limit, in such a way
that no resonance poles are left inside the physical sheet.
Defining now the function

θµ,ν(x, σ, ω) := 2πi(ν + x/2) + 2ωµ− σ (10)

the singularities of {x}σ
θ,ℓ are easily identified as

zeros : θµ,ν(x, σ, ω), θµ,ν(1 − x, σ, ω), (11)

poles : θµ,ν(−x, σ, ω), θµ,ν(x − 1, σ, ω) . (12)

Note that when taking 0 ≤ x ≤ 1 the poles are situated
in the non-physical sheet.

This brings us to the question of how to interpret these
poles and how can we characterize the physical properties
of the related particles? Considering the S-matrix Sab(θ),
which describes the scattering of two particles of type
a and b with masses ma and mb, we assume that there
is a resonance pole situated at θR = σ − iσ̄. According
to the Breit-Wigner formula [17] (see also e.g. [18]) the
mass Mc̃ and the decay width Γc̃ of an unstable particle
of type c̃ can be conveniently expressed as

2M2
c̃ =

√

γ2 + γ̃2 + γ, Γ2
c̃/2 =

√

γ2 + γ̃2 − γ, (13)

where

γ = m2
a + m2

b + 2mamb coshσ cos σ̄, (14)

γ̃ = 2mamb sinh |σ| sin σ̄ . (15)

We keep here in mind that this description, although
frequently used e.g. [9,5,13], is not entirely rigorous and
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requires additional investigation. This caution is based
on various facts. First, the relations (13) are simply de-
rived by carrying over a prescription from usual quantum
mechanics to quantum field theory, i.e. complexifying
the mass of a stable particle. Second, solving the Breit-
Wigner formula for the quantities Mc̃, Γc̃ and treating
them literally as mass and decay width is somewhat prob-
lematic since this is in conflict with Heisenberg’s uncer-
tainty principle, because apparently we know simultane-
ously the energy and the time. Third, the Breit-Wigner
relations presume an exponential decay in momentum
space, which is in fact incompatible with the general
principles of quantum field theory and therefore might
possibly be a problem in this context [19]. Nonetheless,
we employ these quantities and try to find evidence to
support that they are indeed meaningful. When taking
Mc̃ to be the mass of the unstable particle there should
be a threshold for energetic reasons of the type

Mc̃ ≥ ma + mb , (16)

with the consequence that the decay width is bounded
by

Γ2
c̃ ≥ 8mamb(1 − cosh σ cos σ̄) . (17)

So far evidence for these thresholds has not been found
in the literature. One reason for this is that the unstable
particles enter the bootstrap principle in a more passive
way than the stable particles, whose properties are di-
rectly used in the construction procedure. Hence one
expects that signs for these thresholds will emerge in a
more indirect way.

A summary of our statements about the pole structure
of Ŝ(θ) is depicted in figure 1.

Figure 1: The poles of the blocks {x}σ
θ,ℓ are the crosses in the

sheet −π ≤ Im θ ≤ 0. The crosses on the positive part of the

imaginary axis are associated, as usual, with stable particles.

For equal masses of the stable particles the threshold (16) is

σt = arccosh[(3 − cosπx)/(1 + cosπx)].

Since the poles inside the sheet 0 ≤ Im θ ≤ π are as-
sociated to Smin

ab (θ), it is also obvious from figure 1 why
the prescription (2) may not be employed for this part
of the S-matrix, since it would lead to a pole structure
which is, according to (13), non physical for Mc̃ and Γc̃.

A. Examples

It is clear by construction that our prescription in-
cludes all affine Toda field theories related to simply laced
Lie algebras, since they all factorize as (1) and may be
represented in the form (4), see e.g. [8]. Taking the res-
onance parameter σ to be zero and the set A = {t} for
0 ≤ t ≤ 1, we recover as a special case the elliptic version
of the sinh-Gordon model proposed in [5]. Reintroducing
σ, its scattering matrix reads

Ŝ(θ) =

∞
∏

n=−∞

tanh(θ − iπx + nω + σ)/2

tanh(θ + iπx + nω + σ)/2
. (18)

According to (13) the masses and decay width of the
unstable particles are

Mσ,nω
µ,ν = m

√
2 cosh

θµ,ν(y, σ, nω)

2
, y = −x, x − 1 (19)

Γσ,nω
µ,ν = m2

√
2 sinh

θµ,ν(y, σ, nω)

2
, y = −x, x − 1 (20)

where m denotes the mass of the stable particle. The
thresholds (16) and (17) translate in this case into

cosh(nω + σ) ≥ 3 ∓ cosπx

1 ± cosπx
, Γ ≥ 4m

sin2 π(2x+1±1)
4

cos π(2x+1±1)
4

.

(21)

As a further example we consider the elliptic general-
ization of the A1|AN−1-theory (≡ SU(N)2-homogeneous
sine-Gordon model). The two-particle S-matrix describ-
ing the scattering of two stable particles of type a and b,
with 1 ≤ a, b ≤ N − 1, related to the non-elliptic version
of this model was proposed in [9]. In our notation it may
be written as

Sab(θ, σab) = (−1)δab

[

ca

√

{1/2}σab

θ

]Iab

. (22)

Here I denotes the incidence matrix of the SU(N)-
Dynkin diagram, the resonance parameters have the
property σab = −σba and ca = ±1 depending on whether
a is even or odd. According to our prescription outlined
in the previous paragraph, the elliptic generalization of
(22) is

Ŝab(θ, σab, ℓ) = (−1)δab

[

ca

√

{1/2}σab

θ,ℓ

]Iab

. (23)

Note that despite the appearance of the square root, S
as well as Ŝ are still meromorphic functions in θ.
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III. RG-SCALING FUNCTIONS

Having established that our prescription leads to sen-
sible solutions of the bootstrap consistency equations, we
would also like to know what kind of quantum field the-
ories these scattering matrices correspond to. Up to now
all known solutions to the on-shell consistency equations
have led to sensible QFT’s, albeit a rigorous proof which
would establish that indeed all solutions are well-defined
local QFT’s is still an outstanding issue. Some crucial
characteristics of the theory are contained in the renor-
malization group scaling functions, which we now want
to determine. In particular, we want to identify in the
extreme ultraviolet limit the Virasoro central charges of
the corresponding conformal field theories.

A. The c-theorem

We carry out this task by evaluating the c-theorem [14]
in the version presented in [13]

c(r) = 3

∞
∑

n=1

∑

µ1...µn

∞
∫

−∞

dθ1 . . . dθn

n!(2π)n
e−r E (24)

×
∣

∣

∣
FΘ|µ1...µn

n (θ1, . . . , θn)
∣

∣

∣

2 (6 + 6rE + 3r2E2 + r3E3)

2E4
.

The sum of the on-shell energies is here denoted by
E =

∑n
i=1 mµi

cosh θi, with mµi
being the masses of the

theory and the correlation function for the trace of the
energy momentum tensor Θ has been expanded in terms

of n-particle form factors F
Θ|µ1...µn

n (θ1, . . . , θn) (see [20]
for general properties and [16] for explicit sinh-Gordon
formulae). We normalized Θ and mµi

by an overall
mass scale, such that E as well as the renormalization
group parameter r become dimensionless. In particular
limr→0 c(r) is the ultraviolet Virasoro central charge.

Let us now start with the evaluation of c(r) as defined
in (24) for the elliptic version of the sinh-Gordon model.
As the input for this we need to know the n-particle form
factors. Since so far it is not known how to compute the
sum in n analytically, we have to resort to a numerical
treatment and it is clear that we have to terminate the
series at a certain value of n. Fortunately, it was ob-
served explicitly in [16], that in fact the expression for
n = 2 is already very close to the exact answer for the
sinh-Gordon model. We assume here that the conver-
gence behaviour is still true when we generalize the scat-
tering matrix to (18). Note that in general one has to be
careful with this approximation, since the higher parti-
cle contributions are crucial in some models in order to
obtain a good approximation to c(r) [21,13,22]. In the
two-particle approximation, indicated by the superscript,
one can perform one of the integrations analytically and
(24) acquires the simple form

lim
r→0

c(2)(r) =
3

2

∞
∫

0

dθ
|FΘ

2 (2θ)|2
cosh4 θ

. (25)

It is here crucial to note that besides the formulation
of Ŝ in terms of elliptic functions for N → ∞, it can
also be expressed equivalently in terms of the usual sinh-
Gordon S-matrix (5). When trying to solve now the form
factor consistency equations [20], we can exploit this ob-
servation. Since for the model at hand there is neither
a kinematic nor a bound state pole in FΘ

2 (θ), the only
equations to be solved are Watson’s equations. The two
particle form factor is then easily obtained to be

F̂Θ
2 (θ, N) = 2π

N
∏

n=−N

Fmin(θ + nω)

Fmin(iπ + nω)
, (26)

where Fmin(θ) is the minimal form factor of the sinh-
Gordon model obtained in [16]

Fmin(θ) = exp



4

∞
∫

0

dt

t

(

cos

(

tθ

π

)

coth t + i sin

(

tθ

π

))

× sinh( t(x−1)
2 ) sinh( tx

2 ) sinh( t
2 )

sinh(t)

]

. (27)

Using the infinite product representation for Fmin(θ) [16]
the solution (26) for N → ∞ coincides with the equation
(5.3) in [5]. Proceeding now to the evaluation of (24), we

require |F̂Θ
2 (θ, N)|2, whose characteristics are captured

in figure 2.

Figure 2: Absolute value squared of the two particle form fac-

tors f(θ, N) = |F̂Θ
2 (θ, N)/2π|2 as functions of the rapidity

for different values of N for ω = 1.3 and x = 0.1.

We observe that for a certain value of N the function
starts to converge, which is of course important from a
technical point of view when we want to compute the
limiting case N → ∞. The other observation we make
in figure 2, see also figure 5 in [16], is that f(θ, N = 0)
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always has a distinct maximum, which we refer to as θm.
From (27) follows that it is determined by the solution
of

4θm

π
cosh θm sin πx + cosh 2xπ coth

θm

2

=
cosh 3θm

2

sinh θm

2

+ 2(2x − 1) cosπx sinh θm . (28)

Solving this equation for various values of x, we find that
θm is always slightly greater than the smallest threshold
bound obtained from (21). For instance for x = 0.1 we
obtain θm ≃ 1.439 and nω + σ > 0.315 and for x = 0.5
we have θm ≃ 2.040 and nω + σ > 1.763. We interpret
this as an indication that the form factors “know” about
the thresholds (21). We support this now by considering
limN→∞ f(θ, N) for various values of ω.

Figure 3: Absolute value squared of minimal form factors

g(θ, ω) = limN→∞ |F̂min(θ, N)|2 as functions of the rapidity

for different values of ω and x = 0.1.

Figure 4: Integrand of equation (25), that is h(θ, ω) =

limN→∞ |F̂min(θ, N)|2/ cosh4 θ as a function of the rapidity

for different values of ω and x = 0.1.

We observe that in the region in which the factor
1/ cosh4(θ), emerging in (25), is still non vanishing the

integrals limN→∞

∫

dθ|F̂min(θ, N)|2 are decreasing func-
tions of ω. This behaviour is changed once we take
ω < θm as we can explicitly extract from figure 4.

Naturally this features are also reflected in the scaling
functions. Presuming that for each value of N we have a
consistent theory, we would like to know which ultravio-
let central charges these models possess and in addition
we want to identify a value of N for which the related
model constitutes reasonably good approximation for the
elliptic models. That such an identification is possible is
exhibited in figure 5. In addition we observe, that for
fixed ω and x the scaling function is a monotonically in-
creasing when N is varied.

Figure 5: Ultraviolet Virasoro central charge c(2) as a function

of N .

Focussing now on the elliptic case, that is we select a
large enough N such that this case is well approximated,
we compute the scaling function in dependence of ω for
various values of r. Our results are depicted in figure 6.

Figure 6: Ultraviolet Virasoro central charge c(2) as a function

of ω.
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In the extreme limits we obtain limω→0 c(r, ω) =
0 and for large ω we recover the values of the sinh-
Gordon model, limω→∞ c(r, ω) = cSG(r). The latter
limit follows from (9) and is in addition compatible with
limθ→∞ Fmin(θ) = 1. The values for the extremal points
were already quoted in [5], however, we also observe
that the function is not monotonically increasing between
these points as claimed in there. In fact, in the physi-
cal region, that is for values of ω > 0.315, the function is
monotonically decreasing and does not take on values be-
tween 0 and 1. Remarkably, the threshold is quite clearly
exhibited by a drastic change in the behaviour of c, that
is the onset of a small plateau as is visible in figure 6.
We performed the same computation for different values
of x and observed that this onset moves in the direction
predicted by equation (21).

B. The thermodynamic Bethe ansatz

Let us now compare the results of the previous section
with an alternative method, namely the thermodynamic
Bethe ansatz [15]. For this we first have to solve the
TBA-equations

r m̂i cosh θ + ln(1 − e−Li(θ)) =
∑

j

ϕij ∗ Lj(θ) (29)

for the function Li(θ). The information of the scat-
tering matrix is captured in the kernel ϕij(θ) =
−id lnSij(θ)/dθ of the rapidity convolution, which is de-
noted as usual by f ∗ g(θ) :=

∫

dθ′/2π f(θ − θ′)g(θ′).
The dimensionless parameter r = m1T

−1 is the inverse
temperature T times the overall mass scale of the light-
est particle m1. Also all masses have been normalized
in this way, i.e. m̂i = mi/m1. Having determined the
Li(θ)-functions, we may compute the scaling function by
means of

c′(r) =
3 r

π2

∑

i

m̂i

∫ ∞

0

dθ cosh θ Li(θ) . (30)

Once again limr→0 c′(r) is the ultraviolet Virasoro central
charge. We would like to recall here that the scaling
functions c(r) and c′(r) are not identical, but contain
qualitatively the same information in the RG sense.

In order to carry out this analysis we need to know
in (29) the kernel ϕ(θ) as input. For the model under
consideration we can exploit the factorization property
(18) for a finite product and trivially obtain

ϕN (θ) =

N
∑

n=−N

ϕSG(θ + nω + σ) , (31)

where ϕSG(θ) is the sinh-Gordon kernel, e.g. [23]

ϕSG(θ) =
4 sin(πx) cosh θ

cosh(2θ) − cos(2πx)
. (32)

Using alternatively the representation of the S-matrix
(18) in terms of elliptic functions, we compute the kernel
directly to

lim
N→∞

ϕN (θ) =
Kℓ

π

∑

k=−,+

[

dc θk

sn θk
+ ℓ(1 − ℓ)

sn θk

dc θk

]

. (33)

With these expression we carry out our numerical anal-
ysis, that is we solve iteratively the equation (29) and
evaluate (30) thereafter. The results of this investiga-
tions are presented in figure 7.

Unfortunately for very small values of ω and r our nu-
merical iteration procedure does not converge reliably.
However, we will be content at this stage with the data
obtained so far, since they already support qualitative
our c-theorem analysis. They confirm that above thresh-
old the scaling function is monotonically decreasing as a
function of ω and also that values greater than 1 may be
reached, even for finite values of r.

Figure 7: TBA scaling function.

IV. CONCLUSIONS

Starting from a given scattering matrix of hyperbolic
type, we have demonstrated that it is possible to include
consistently an arbitrary number of unstable particles
into the spectrum of the theory. In particular when this
number becomes infinite the S-matrix may be expressed
in terms of elliptic functions.

For the generalization of the sinh-Gordon model we
computed RG scaling functions. Within these analysis we
found clear evidence for the thresholds which constrain
the masses of the unstable particles. Above threshold,
the values the ultraviolet Virasoro central charges may
take are between 1 and 2 (possibly slightly greater than
2) and not between 0 and 1 as suggested in [5]. The
theories are consistent for each finite value of N . For
fixed resonance parameters ω and σ the scaling functions
are non-decreasing for increasing N .

6



Concerning the investigation of the c-theorem, it would
be desirable to refine the analysis. In particular one
should include higher n-particle form factors into the
expansion. For the elliptic version some of them were
already presented in [5], but in general it remains a
challenge to find closed expressions for arbitrary particle
numbers. At present the TBA analysis is the least con-
clusive exploration and deserves further consideration in
future. In particular the regions of ω and r, which were
not accessible to us, should be explored and might pos-
sibly lead to a further more concrete indication of the
thresholds also in this context. In regard to this, it will
be useful develop existence criteria for the solution of the
TBA equations analogue to the one derived in [23]. The
one presented in there can not be taken over directly,
since it makes use of the fact that

∫

dθ|ϕ(θ)| equals 2π,
whereas for the model investigated here this is 2πN . It
would be desirable to develop analytic approximations
for the TBA solutions in the extreme ultraviolet limit,
i.e. r = 0, similar to the ones already existing for theo-
ries with different characteristic features.
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