2 research outputs found
Galaxies in box: A simulated view of the interstellar medium
We review progress in the development of physically realistic three
dimensional simulated models of the galaxy.We consider the scales from star
forming molecular clouds to the full spiral disc. Models are computed using
hydrodynamic (HD) or magnetohydrodynamic (MHD) equations and may include cosmic
ray or tracer particles. The range of dynamical scales between the full galaxy
structure and the turbulent scales of supernova (SN) explosions and even cloud
collapse to form stars, make it impossible with current computing tools and
resources to resolve all of these in one model. We therefore consider a
hierarchy of models and how they can be related to enhance our understanding of
the complete galaxy.Comment: Chapter in Large Scale Magnetic Fields in the Univers
Physical Processes in Star Formation
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio