42 research outputs found

    A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement

    Get PDF
    Yaw stability control systemplays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control

    Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city

    Get PDF
    There are substantial limitations in understanding of the distribution of antimicrobial resistance (AMR) in humans and livestock in developing countries. This papers present the results of an epidemiological study examining patterns of AMR in Escherichia coli isolates circulating in sympatric human (n = 321) and livestock (n = 633) samples from 99 households across Nairobi, Kenya. E. coli isolates were tested for susceptibility to 13 antimicrobial drugs representing nine antibiotic classes. High rates of AMR were detected, with 47.6% and 21.1% of isolates displaying resistance to three or more and five or more antibiotic classes, respectively. Human isolates showed higher levels of resistance to sulfonamides, trimethoprim, aminoglycosides and penicillins compared with livestock (P0.05). These findings revealed a high prevalence of AMR E. coli circulating in healthy humans and livestock in Nairobi, with no evidence to suggest that keeping livestock, when treated as a single risk factor, contributed significantly to the burden of AMR in humans, although the presence of livestock waste was significant. These results provide an understanding of the broader epidemiology of AMR in complex and interconnected urban environments

    High Energy FCNC search through eμe \mu Colliders

    Full text link
    We study the potential impacts of a new type of particle collider -- an eμe\mu collider -- on the search for new physics beyond the Standard Model. As our first attempt for exploring its physics potential, we demonstrate that the the eμe\mu collision experiment can be highly efficient in searching for lepton-number-violating Flavor Changing Neutral Current phenomena.Comment: 11 pages, including 2 e-postscript figures, title & abstract are changed, minor modifications in the main tex

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (, , ) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Dorothea Lange: The heart and mind of a photographer

    No full text
    New York264 p.: bibl., illus.; 31 c

    A yaw rate tracking control of active front steering system using composite nonlinear feedback

    No full text
    10.1007/978-3-642-45037-2_22Communications in Computer and Information Science402231-24

    A new method to improve in-bore middle cerebral artery occlusion in rats: demonstration with diffusion- and perfusion-weighted imaging

    No full text
    BACKGROUND AND PURPOSE: In-bore middle cerebral artery occlusion (MCAO) enables investigators to acquire preischemic MRI data and to image ischemic changes immediately after occlusion. We have developed a highly successful in-bore MCAO method. This study describes the methods and pertinent techniques. METHODS: Sixty-seven Sprague-Dawley rats were subjected to temporary (n=36) or permanent (n=31) MCAO. The occluding device consisted of a supporting tubing, a driving line, and a silicone-coated 4-0 nylon suture occluder. Outside the magnet, the occluder was positioned in the carotid canal. MCAO was achieved in the magnet bore by remotely advancing the driving line until resistance was felt. Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) were acquired before and immediately after occlusion and were used to document the presence of MCAO. RESULTS: Fifty-nine (88.1%) rats were successfully occluded, demonstrating hyperintensity on DWI, perfusion deficits on PWI, and no subarachnoid hemorrhage at postmortem examination. The average values of the apparent diffusion coefficient in both the frontoparietal cortex and the lateral caudoputamen significantly decreased as early as 3 minutes after the onset of ischemia. The failures included preocclusion damage (1/67), sliding out of the occluder during occlusion (1/67), no occlusion (2/67), and arterial perforation (4/67). CONCLUSIONS: Our in-bore MCAO method is easily performed and is as successful as MCAO induced outside the magnet
    corecore