254 research outputs found

    Percutaneous coronary intervention in the elderly: changes in case-mix and periprocedural outcomes in 31758 patients treated between 2000 and 2007

    Get PDF
    <p>Background: The elderly account for an increasing proportion of the population and have a high prevalence of coronary heart disease. Percutaneous coronary intervention (PCI) is the most common method of revascularization in the elderly. We examined whether the risk of periprocedural complications after PCI was higher among elderly (age ≥75 years) patients and whether it has changed over time.</p> <p>Methods and Results: The Scottish Coronary Revascularization Register was used to undertake a retrospective cohort study on all 31 758 patients undergoing nonemergency PCI in Scotland between April 2000 and March 2007, inclusive. There was an increase in the number and percentage of PCIs undertaken in elderly patients, from 196 (8.7%) in 2000 to 752 (13.9%) in 2007. Compared with younger patients, the elderly were more likely to have multivessel disease, multiple comorbidity, and a history of myocardial infarction or coronary artery bypass grafting (χ2 tests, all P<0.001). The elderly had a higher risk of major adverse cardiovascular events within 30 days of PCI (4.5% versus 2.7%, χ2 test P<0.001). Over the 7 years, there was a significant increase in the proportion of elderly patients who had multiple comorbidity (χ2 test for trend, P<0.001). Despite this, the underlying risk of complications did not change significantly over time either among the elderly (χ2 test for trend, P=0.142) or overall (χ2 test for trend, P=0.083).</p> <p>Conclusions: Elderly patients have a higher risk of periprocedural complications and account for an increasing proportion of PCIs. Despite this, the risk of complications after PCI has not increased over time.</p&gt

    Exact sampling from non-attractive distributions using summary states

    Full text link
    Propp and Wilson's method of coupling from the past allows one to efficiently generate exact samples from attractive statistical distributions (e.g., the ferromagnetic Ising model). This method may be generalized to non-attractive distributions by the use of summary states, as first described by Huber. Using this method, we present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss the advantages and limitations of the method of summary states for practical sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we show that such a slowing down can occur in the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at http://wol.ra.phy.cam.ac.uk/mackay/exac

    Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils

    Get PDF
    Magnesium phosphates such as struvite (MgNH4PO4 · 6H2O) can be recovered from municipal, industrial, and agricultural wastewaters. However, limited information is available on the beneficial reuse of these recovered products; research has focused on low pH soils. Th is study determined whether recovered struvite and dittmarite (MgNH4PO4 · H2O) were effective P fertilizers in neutral to slightly alkaline soils. In addition to commercially available triple superphosphate (TSP) and certified organic rock phosphate (RP), recovered struvite, dittmarite, and a heterogeneous recovered phosphate were evaluated in a laboratory dissolution study and as fertilizers for spring wheat (Triticum aestivum L.) in a greenhouse study. Struvite and dittmarite were much more soluble than RP, but less soluble than TSP. Laboratory dissolution kinetics were fast, with most materials nearing equilibrium within 7 to 14 d. At a soil pH of 6.5, both dittmarite and struvite increased the average plant P concentration over the control. Struvite and dittmarite performance was similar to TSP. There were no significant differences in plant dry matter (DM) production or total P uptake at pH 6.5. In the limed soil (pH 7.6), many treatments had plant P concentrations significantly lower than the control, but most fertilizers increased DM production over the control; all fertilizers generally performed similarly to one another. These findings support previous work showing recovered Mg phosphates to be effective in acidic soils, and provide evidence that they are also effective in slightly alkaline soils. Recovered Mg phosphates could become a useful alternative for P fertilization in arid and semiarid environments

    A Relation Between Approaches to Integrability in Superconformal Yang-Mills Theory

    Get PDF
    We make contact between the infinite-dimensional non-local symmetry of the typeIIB superstring on AdS5xS5 worldsheet theory and a non-abelian infinite-dimensional symmetry algebra for the weakly coupled superconformal gauge theory. We explain why the planar limit of the one-loop dilatation operator is the Hamiltonian of a spin chain, and show that it commutes with the g*2 N = 0 limit of the non-abelian charges.Comment: 19 pages, harvma

    Neuropeptide Y1 receptor in immune cells regulates inflammation and insulin resistance associated with diet-induced obesity

    Get PDF
    Recruitment of activated immune cells into white adipose tissue (WAT) is linked to the development of insulin resistance and obesity, but the mechanism behind this is unclear. Here, we demonstrate that Y1 receptor signaling in immune cells controls inflammation and insulin resistance in obesity. Selective deletion of Y1 receptors in the hematopoietic compartment of mice leads to insulin resistance and inflammation in WAT under high fat-fed conditions. This is accompanied by decreased mRNA expression of the anti-inflammatory marker adiponectin in WAT and an increase of the proinflammatory monocyte chemoattractant protein-1 (MCP-1). In vitro, activated Y1-deficient intraperitoneal macrophages display an increased inflammatory response, with exacerbated secretion of MCP-1 and tumor necrosis factor, whereas addition of neuropeptide Y to wild-type macrophages attenuates the release of these cytokines, this effect being blocked by Y1 but not Y2 receptor antagonism. Importantly, treatment of adipocytes with the supernatant of activated Y1-deficient macrophages causes insulin resistance, as demonstrated by decreased insulin-induced phosphorylation of the insulin receptor and Akt as well as decreased expression of insulin receptor substrate 1. Thus, Y1 signaling in hematopoietic-derived cells such as macrophages is critical for the control of inflammation and insulin resistance in obesity.Laurence Macia, Ernie Yulyaningsih, Laurent Pangon, Amy D. Nguyen, Shu Lin, Yan C. Shi, Lei Zhang, Martijn Bijker, Shane Grey, Fabienne Mackay, Herbert Herzog, and Amanda Sainsbur

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Genetic defects in common variable immunodeficiency

    Get PDF
    Common variable immunodeficiency (CVID) is the most frequent clinically manifested primary immunodeficiency. According to clinical and laboratory findings, CVID is a heterogeneous group of diseases. Recently, the defects of molecules regulating activation and terminal differentiation of B lymphocytes have been described in some patients with CVID. In this study, we show the overview of deficiencies of inducible costimulator, transmembrane activator and calcium-modulator and cytophilin ligand interactor, CD19 molecules, their genetic basis, pathogenesis and clinical manifestations
    corecore