23 research outputs found

    New agents in the Treatment of Myeloma Bone Disease

    Get PDF
    Patients with multiple myeloma develop a devastating bone disease driven by the uncoupling of bone remodelling, excess osteoclastic bone resorption and diminished osteoblastic bone formation. The bone phenotype is typified by focal osteolytic lesions leading to pathological fractures, hypercalcaemia and other catastrophic bone events such as spinal cord compression. This causes bone pain, impaired functional status, decreased quality of life and increased mortality. Early in the disease, malignant plasma cells occupy a niche environment that encompasses their interaction with other key cellular components of the bone marrow microenvironment. Through these interactions, osteoclast-activating factors and osteoblast inhibitory factors are produced, which together uncouple the dynamic process of bone remodelling, leading to net bone loss and focal osteolytic lesions. Current management includes antiresorptive therapies, i.e. bisphosphonates, palliative support and orthopaedic interventions. Bisphosphonates are the mainstay of treatment for myeloma bone disease (MBD), but are only partially effective and do have some significant disadvantages; for example, they do not lead to the repair of existing bone destruction. Thus, newer agents to prevent bone destruction and also promote bone formation and repair existing lesions are warranted. This review summarises novel ways that MBD is being therapeutically targeted

    ARQ-197, a small-molecule inhibitor of c-Met, reduces tumour burden and prevents myeloma-induced bone disease in vivo

    Get PDF
    The receptor tyrosine kinase c-Met, its ligand HGF, and components of the downstream signalling pathway, have all been implicated in the pathogenesis of myeloma, both as modulators of plasma cell proliferation and as agents driving osteoclast differentiation and osteoblast inhibition thus, all these contribute substantially to the bone destruction typically caused by myeloma. Patients with elevated levels of HGF have a poor prognosis, therefore, targeting these entities in such patients may be of substantial benefit. We hypothesized that ARQ-197 (Tivantinib), a small molecule c-Met inhibitor, would reduce myeloma cell growth and prevent myeloma-associated bone disease in a murine model. In vitro we assessed the effects of ARQ-197 on myeloma cell proliferation, cytotoxicity and c-Met protein expression in human myeloma cell lines. In vivo we injected NOD/SCID-Ī³ mice with PBS (non-tumour bearing) or JJN3 cells and treated them with either ARQ-197 or vehicle. In vitro exposure of JJN3, U266 or NCI-H929 cells to ARQ-197 resulted in a significant inhibition of cell proliferation and an induction of cell death by necrosis, probably caused by significantly reduced levels of phosphorylated c-Met. In vivo ARQ-197 treatment of JJN3 tumour-bearing mice resulted in a significant reduction in tumour burden, tumour cell proliferation, bone lesion number, trabecular bone loss and prevented significant decreases in the bone formation rate on the cortico-endosteal bone surface compared to the vehicle group. However, no significant differences on bone parameters were observed in non-tumour mice treated with ARQ-197 compared to vehicle, implying that in tumour-bearing mice the effects of ARQ-197 on bone cells was indirect. In summary, these res ults suggest that ARQ-197 could be a promising therapeutic in myeloma patients, leading to both a reduction in tumour burden and an inhibition of myeloma-induced bone disease

    Myeloma bone disease : the osteoblast in the spotlight

    Get PDF
    Lytic bone disease remains a life-altering complication of multiple myeloma, with up to 90% of sufferers experiencing skeletal events at some point in their cancer journey. This tumour-induced bone disease is driven by an upregulation of bone resorption (via increased osteoclast (OC) activity) and a downregulation of bone formation (via reduced osteoblast (OB) activity), leading to phenotypic osteolysis. Treatments are limited, and currently exclusively target OCs. Despite existing bone targeting therapies, patients successfully achieving remission from their cancer can still be left with chronic pain, poor mobility, and reduced quality of life as a result of bone disease. As such, the field is desperately in need of new and improved bone-modulating therapeutic agents. One such option is the use of bone anabolics, drugs that are gaining traction in the osteoporosis field following successful clinical trials. The prospect of using these therapies in relation to myeloma is an attractive option, as they aim to stimulate OBs, as opposed to existing therapeutics that do little to orchestrate new bone formation. The preclinical application of bone anabolics in myeloma mouse models has demonstrated positive outcomes for bone repair and fracture resistance. Here, we review the role of the OB in the pathophysiology of myeloma-induced bone disease and explore whether novel OB targeted therapies could improve outcomes for patients

    NOD/SCID-GAMMA Mice Are an Ideal Strain to Assess the Efficacy of Therapeutic Agents Used in the Treatment of Myeloma Bone Disease

    Get PDF
    Animal models of multiple myeloma vary in terms of consistency of onset, degree of tumour burden and degree of myeloma bone disease. Here we describe five pre-clinical models of myeloma in NOD/SCID-GAMMA mice to specifically study the effects of therapeutic agents on myeloma bone disease. Groups of 7ā€“8 week old female irradiated NOD/SCID-GAMMA mice were injected intravenously via the tail vein with either 1x106 JJN3, U266, XG-1 or OPM-2 human myeloma cell lines or patient-derived myeloma cells. At the first signs of morbidity in each tumour group all animals were sacrificed. Tumour load was measured by histological analysis, and bone disease was assessed by micro-CT and standard histomorphometric methods. Mice injected with JJN3, U266 or OPM-2 cells showed high tumour bone marrow infiltration of the long bones with low variability, resulting in osteolytic lesions. In contrast, mice injected with XG-1 or patient-derived myeloma cells showed lower tumour bone marrow infiltration and less bone disease with high variability. Injection of JJN3 cells into NOD/SCID-GAMMA mice resulted in an aggressive, short-term model of myeloma with mice exhibiting signs of morbidity 3 weeks later. Treating these mice with zoledronic acid at the time of tumour cell injection or once tumour was established prevented JJN3-induced bone disease but did not reduce tumour burden, whereas, carfilzomib treatment given once tumour was established significantly reduced tumour burden. Injection of U266, XG-1, OPM-2 and patient-derived myeloma cells resulted in less aggressive longer-term models of myeloma with mice exhibiting signs of morbidity 8 weeks later. Treating U266-induced disease with zoledronic acid prevented the formation of osteolytic lesions and trabecular bone loss as well as reducing tumour burden whereas, carfilzomib treatment only reduced tumour burden. In summary, JJN3, U266 or OPM-2 cells injected into NOD/SCID-GAMMA mice provide robust models to study anti-myeloma therapies, particularly those targeting myeloma bone disease

    Autologous haematopoietic stem cell transplantation for refractory stiff-person syndrome: the UK experience

    Get PDF
    Stiff Person Syndrome (SPS) is a rare immune-mediated disabling neurological disorder characterised by muscle spasms and high GAD antibodies. There are only a few case reports of autologous haematopoietic stem cell transplantation (auto-HSCT) as a treatment for SPS. Objective To describe the UK experience of treating refractory SPS with auto-HSCT. Methods Between 2015 and 2019, 10 patients with SPS were referred to our institution for consideration of auto-HSCT. Eight patients were deemed suitable for autograft and four were treated. Of the treated patients, three had classical SPS and one had the progressive encephalomyelitis with rigidity and myoclonus variant. All patients were significantly disabled and had failed conventional immunosuppressive therapy. Patients were mobilised with Cyclophosphamide (Cy) 2 g/m2ā€‰+ā€‰G-CSF and conditioned with Cy 200 mg/kgā€‰+ā€‰ATG followed by auto-HSCT. Results Despite their significantly reduced performance status, all patients tolerated the procedure with no unexpected toxicities. Following autograft, all patients improved symptomatically and stopped all forms of immunosuppressive therapies. Two patients were able to ambulate independently from being wheelchair dependent. One patientā€™s walking distance improved from 300 meters to 5 miles and one patientā€™s ambulation improved from being confined to a wheelchair to be able to walk with a frame. Two patients became seronegative for anti-GAD antibodies and normalised their neurophysiological abnormalities. Conclusions Auto-HSCT is an intensive but well tolerated and effective treatment option for patients with SPS refractory to conventional immunotherapy. Further work is warranted to optimise patient selection and establish the efficacy, long-term safety, and cost-effectiveness of this treatment

    Mesenchymal lineage cells and their importance in B lymphocyte niches

    Get PDF
    Early B lymphopoiesis occurs in the bone marrow and is reliant on interactions with numerous cell types in the bone marrow microenvironment, particularly those of the mesenchymal lineage. Each cellular niche that supports the distinct stages of B lymphopoiesis is unique. Different cell types and signaling molecules are important for the progressive stages of B lymphocyte differentiation. Cells expressing CXCL12 and IL-7 have long been recognized as having essential roles in facilitating progression through stages of B lymphopoiesis. Recently, a number of other factors that extrinsically mediate B lymphopoiesis (positively or negatively) have been identified. In addition, the use of transgenic mouse models to delete specific genes in mesenchymal lineage cells has further contributed to our understanding of how B lymphopoiesis is regulated in the bone marrow. This review will cover the current understanding of B lymphocyte niches in the bone marrow and key extrinsic molecules and signaling pathways involved in these niches, with a focus on how mesenchymal lineage cells regulate B lymphopoiesis

    Bone pain in multiple myeloma (BPMM) ā€” a protocol for a prospective, longitudinal, observational study

    Get PDF
    Multiple myeloma (MM) is a bone marrow neoplasia that causes bone pain in 70% patients. While preclinical models of MM have suggested that both nerve sprouting and nerve injury may be causative for the pain, there is a lack of clinical data. Thus, the primary aims of this clinical study are: (1) to provide a deep characterization of the subjective experience of pain and quality of life in MM patients; (2) to investigate disturbances in the bone innervation of MM patients. Secondary aims include exploring correlations between pain and serum inflammatory and bone turnover biomarkers. In a prospective, observational study (clinicaltrials.gov: NCT04273425), patients with suspected MM requiring a diagnostic iliac crest biopsy at Sheffield Teaching Hospital (UK) are invited to participate. Consenting patients answer seven standardized questionnaires assessing pain, quality of life and catastrophizing. Bone turnover biomarkers and inflammatory cytokines are measured in fasting serum samples, and bone innervation is evaluated in diagnostic biopsies. MM patients are invited to a follow-up upon completion of first line treatment. This will be the first deep characterization of pain in MM patients and its correlation with disturbances in bone innervation. Understanding how bone turnover and inflammation correlate to pain in MM is crucial to identify novel analgesic targets for this condition

    TGFĪ² inhibition stimulates collagen maturation to enhance bone repair and fracture resistance in a murine myeloma model

    Get PDF
    Multiple myeloma is a plasma cell malignancy that causes debilitating bone disease and fractures, in which TGFĪ² plays a central role. Current treatments do not repair existing damage and fractures remain a common occurrence. We developed a novel low tumour phase murine model mimicking the plateau phase in patients, as we hypothesized this would be an ideal time to treat with a bone anabolic. Using in vivo microCT we show substantial and rapid bone lesion repair (and prevention) driven by SDā€208 (TGFĪ² receptor I kinase inhibitor) and chemotherapy (bortezomib and lenalidomide) in mice with human U266ā€GFPā€luc myeloma. We discovered that lesion repair occurred via an intramembranous fracture repairā€like mechanism and that SDā€208 enhanced collagen matrix maturation to significantly improve fracture resistance. Lesion healing was associated with VEGFA expression in woven bone, reduced osteocyteā€derived PTHrP, increased osteoblasts, decreased osteoclasts and lower serum TRACPā€5b. SDā€208 also completely prevented bone lesion development mice with aggressive JJN3 tumors, and was more effective than an antiā€TGFĪ² neutralizing antibody (1D11). We also discovered that SDā€208 promoted osteoblastic differentiation (and overcame the TGFĪ²ā€induced block in osteoblastogenesis) in myeloma patient bone marrow stromal cells in vitro, comparable to normal donors. The improved bone quality and fractureā€resistance with SDā€208 provides incentive for clinical translation to improve myeloma patient quality of life by reducing fracture risk and fatality

    Preventing and repairing myeloma bone disease by combining conventional antiresorptive treatment with a bone anabolic agent in murine models

    Get PDF
    Multiple myeloma is a plasma cell malignancy, which develops in the bone marrow and frequently leads to severe bone destruction. Current antiresorptive therapies to treat the bone disease do little to repair damaged bone; therefore, new treatment strategies incorporating bone anabolic therapies are urgently required. We hypothesized that combination therapy using the standard of care antiresorptive zoledronic acid (Zol) with a bone anabolic (anti-TGFĪ²/1D11) would be more effective at treating myeloma-induced bone disease than Zol therapy alone. JJN3 myeloma-bearing mice (nā€‰=ā€‰8/group) treated with combined Zol and 1D11 resulted in a 48% increase (pā‰¤0.001) in BV/TV compared to Zol alone and a 65% increase (pā‰¤0.0001) compared to 1D11 alone. Our most significant finding was the substantial repair of U266-induced osteolytic bone lesions with combination therapy (nā€‰=ā€‰8/group), which resulted in a significant reduction in lesion area compared to vehicle (pā‰¤0.01) or Zol alone (pā‰¤0.01). These results demonstrate that combined antiresorptive and bone anabolic therapy is significantly more effective at preventing myeloma-induced bone disease than Zol alone. Furthermore, we demonstrate that combined therapy is able to repair established myelomatous bone lesions. This is a highly translational strategy which could significantly improve bone outcomes and quality of life for patients with myeloma

    SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture

    Get PDF
    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Gloā„¢ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell populations that had been selected for TRAIL-resistance from initially TRAIL-sensitive populations. SAHA may increase TRAIL sensitivity in insensitive cells, but not in cells that have specifically been selected for acquired TRAIL-resistance. [Abstract copyright: Copyright Ā© 2017 Elsevier Inc. All rights reserved.
    corecore