509 research outputs found

    Can modified gravity explain accelerated cosmic expansion?

    Full text link
    We show that the recently suggested explanations of cosmic acceleration by the modification of gravity at small curvature suffer violent instabilities and strongly disagree with the known properties of gravitational interactions.Comment: 4 pages, no figure, revised version (one footnote added

    Accidental Supersymmetric Dark Matter and Baryogenesis

    Full text link
    We show that "accidental" supersymmetry is a beyond-the-Standard Model framework that naturally accommodates a thermal relic dark matter candidate and successful electroweak baryogenesis, including the needed strongly first-order character of the electroweak phase transition. We study the phenomenology of this setup from the standpoint of both dark matter and baryogenesis. For energies around the electroweak phase transition temperature, the low-energy effective theory is similar to the MSSM with light super-partners of the third-generation quarks and of the Higgs and gauge bosons. We calculate the dark matter relic abundance and the baryon asymmetry across the accidental supersymmetry parameter space, including resonant and non-resonant CP-violating sources. We find that there are regions of parameter space producing both the observed value of the baryon asymmetry and a dark matter candidate with the correct relic density and conforming to present-day constraints from dark matter searches. This scenario makes sharp predictions for the particle spectrum, predicting a lightest neutralino mass between 200 and 500 GeV, with all charginos and neutralinos within less than a factor 2 of the lightest neutralino mass and the heavy Higgs sector within 20-25% of that mass, making it an interesting target for collider searches. In addition, we demonstrate that successful accidental supersymmetric dark matter and baryogenesis will be conclusively tested with improvements smaller than one order of magnitude to the current performance of electron electric dipole moment searches and of direct dark matter searches, as well as with IceCube plus Deep Core neutrino telescope data.Comment: 36 pages, 10 figure

    Predictions from Quantum Cosmology

    Get PDF
    The world view suggested by quantum cosmology is that inflating universes with all possible values of the fundamental constants are spontaneously created out of nothing. I explore the consequences of the assumption that we are a `typical' civilization living in this metauniverse. The conclusions include inflation with an extremely flat potential and low thermalization temperature, structure formation by topological defects, and an appreciable cosmological constant.Comment: (revised version), 15 page

    Thermal Decay of the Cosmological Constant into Black Holes

    Full text link
    We show that the cosmological constant may be reduced by thermal production of membranes by the cosmological horizon, analogous to a particle ``going over the top of the potential barrier", rather than tunneling through it. The membranes are endowed with charge associated with the gauge invariance of an antisymmetric gauge potential. In this new process, the membrane collapses into a black hole, thus the net effect is to produce black holes out of the vacuum energy associated with the cosmological constant. We study here the corresponding Euclidean configurations ("thermalons"), and calculate the probability for the process in the leading semiclassical approximation.Comment: 14 pages, 6 figures. Minor correction

    Out of equilibrium: understanding cosmological evolution to lower-entropy states

    Get PDF
    Despite the importance of the Second Law of Thermodynamics, it is not absolute. Statistical mechanics implies that, given sufficient time, systems near equilibrium will spontaneously fluctuate into lower-entropy states, locally reversing the thermodynamic arrow of time. We study the time development of such fluctuations, especially the very large fluctuations relevant to cosmology. Under fairly general assumptions, the most likely history of a fluctuation out of equilibrium is simply the CPT conjugate of the most likely way a system relaxes back to equilibrium. We use this idea to elucidate the spacetime structure of various fluctuations in (stable and metastable) de Sitter space and thermal anti-de Sitter space.Comment: 27 pages, 11 figure

    Cosmological Consequences of String-forming Open Inflation Models

    Get PDF
    We present a study of open inflation cosmological scenarios in which cosmic strings form betwen the two inflationary epochs. It is shown that in these models strings are stretched outside the horizon due to the inflationary expansion but must necessarily re-enter the horizon before the epoch of equal matter and radiation densities. We determine the power spectrum of cold dark matter perturbations in these hybrid models, finding good agreement with observations for values of Γ=Ω0h0.3\Gamma=\Omega_0h\sim0.3 and comparable contributions from the active and passive sources to the CMB. Finally, we briefly discuss other cosmological consequences of these models.Comment: 11 LaTeX pages with 3 eps figure

    The nearly Newtonian regime in Non-Linear Theories of Gravity

    Full text link
    The present paper reconsiders the Newtonian limit of models of modified gravity including higher order terms in the scalar curvature in the gravitational action. This was studied using the Palatini variational principle in [Meng X. and Wang P.: Gen. Rel. Grav. {\bf 36}, 1947 (2004)] and [Dom\'inguez A. E. and Barraco D. E.: Phys. Rev. D {\bf 70}, 043505 (2004)] with contradicting results. Here a different approach is used, and problems in the previous attempts are pointed out. It is shown that models with negative powers of the scalar curvature, like the ones used to explain the present accelerated expansion, as well as their generalization which include positive powers, can give the correct Newtonian limit, as long as the coefficients of these powers are reasonably small. Some consequences of the performed analysis seem to raise doubts for the way the Newtonian limit was derived in the purely metric approach of fourth order gravity [Dick R.: Gen. Rel. Grav. {\bf 36}, 217 (2004)]. Finally, we comment on a recent paper [Olmo G. J.: Phys. Rev. D {\bf 72}, 083505 (2005)] in which the problem of the Newtonian limit of both the purely metric and the Palatini formalism is discussed, using the equivalent Brans--Dicke theory, and with which our results partly disagree.Comment: typos corrected, replaced to match published versio

    Measures for a Transdimensional Multiverse

    Full text link
    The multiverse/landscape paradigm that has emerged from eternal inflation and string theory, describes a large-scale multiverse populated by "pocket universes" which come in a huge variety of different types, including different dimensionalities. In order to make predictions in the multiverse, we need a probability measure. In (3+1)d(3+1)d landscapes, the scale factor cutoff measure has been previously shown to have a number of attractive properties. Here we consider possible generalizations of this measure to a transdimensional multiverse. We find that a straightforward extension of scale factor cutoff to the transdimensional case gives a measure that strongly disfavors large amounts of slow-roll inflation and predicts low values for the density parameter Ω\Omega, in conflict with observations. A suitable generalization, which retains all the good properties of the original measure, is the "volume factor" cutoff, which regularizes the infinite spacetime volume using cutoff surfaces of constant volume expansion factor.Comment: 30 pages, 1 figure Minor revisions, reference adde

    Cosmological Constant of the (p+1)(p+1)-Dimensional World, Embedded in the dd-Dimensional Bulk Space

    Get PDF
    In this manuscript we study the cosmological constant of a (p+1)(p+1)-dimensional world, which lives in the higher dimensional bulk space. We assume the extra dimensions are compact on tori. We consider two cases: positive and negative bulk cosmological constant. It is pointed out that the tiny cosmological constant of our world can be obtained by the dynamics of a scalar field and adjusting the parameters of the model. The cosmological constant of the dual world also will be discussed. We obtain the Dirac quantization of these cosmological constants.Comment: 11 pages, Latex, No figure. In the revised version, major changes have been introduced and also references have been adde
    corecore