55 research outputs found

    Environmental monitoring : phase 5 final report (April 2019 - March 2020)

    Get PDF
    This report presents the results and interpretation for Phase 5 of an integrated environmental monitoring programme that is being undertaken around two proposed shale gas sites in England – Preston New Road, Lancashire and Kirby Misperton, North Yorkshire. The report should be read in conjunction with previous reports freely available through the project website1 . These provide additional background to the project, presentation of earlier results and the rationale for establishment of the different elements of the monitoring programme

    Environmental monitoring : phase 4 final report (April 2018 - March 2019)

    Get PDF
    This report describes the results of activities carried out as part of the Environmental Monitoring Project (EMP) led by the British Geological Survey (BGS) in areas around two shale gas sites in England – Kirby Misperton (Vale of Pickering, North Yorkshire) and Preston New Road (Fylde, Lancashire). It focuses on the monitoring undertaken during the period April 2018–March 2019 but also considers this in the context of earlier monitoring results that have been covered in reports for earlier phases of the project (Phases I–IV) 2 . The EMP project is a multi-partner project involving BGS together with Public Health England (PHE), University of Birmingham, University of Bristol, University of Manchester, Royal Holloway University of London (RHUL) and University of York. The work has been enabled by funding from a combination of the BGS National Capability programme, a grant awarded by the UK Government’s Department for Business Energy & Industrial Strategy (BEIS) and additional benefit-in-kind contributions from all partners. The project comprises the comprehensive monitoring of different environment compartments and properties at and around the two shale-gas sites. The component parts of the EMP are all of significance when considering environmental and human health risks associated with shale gas development. Included are seismicity, ground motion, water (groundwater and surface water), soil gas, greenhouse gases, air quality, and radon. The monitoring started before hydraulic fracturing had taken place at the two locations, and so the results obtained before the initiation of operations at the shale-gas sites represent baseline conditions. It is important to characterise adequately the baseline conditions so that any future changes caused by shale gas operations, including hydraulic fracturing, can be identified. This is also the case for any other new activities that may impact those compartments of the environment being monitored as part of the project. In the period October 2018–December 2018, an initial phase of hydraulic fracturing took place at the Preston New Road (PNR) shale-gas site (shale gas well PNR1-z) in Lancashire. This was followed by a period of flow testing of the well to assess its performance (to end of January 2019). The project team continued monitoring during these various activities and several environmental effects were observed. These are summarised below and described in more detail within the report. The initiation of operations at the shale-gas site signified the end of baseline monitoring. At the Kirby Misperton site (KMA), approval has not yet been granted for hydraulic fracturing of the shale gas well (KM8), and so no associated operations have taken place during the period covered by this report. The effects on air quality arising from the mobilisation of equipment in anticipation of hydraulic fracturing operations starting was reported in the Phase III report, and in a recently published paper3 . Following demobilisation of the equipment and its removal from the site, conditions returned to baseline and the on-going monitoring (reported in this report) is effectively a continuation of baseline monitoring

    State of nature 2023

    Get PDF
    This is the fourth State of Nature Report. It provides a comprehensive overview of species trends across the UK, including specific assessments for England, Northern Ireland, Scotland and Wales, and for the UK’s Overseas Territories

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The geology of part of the Carr Boyd Rocks Complex and its associated nickel mineralization, Western Australia

    No full text
    Ultramafic-mafic intrusive complex, Archean, chemical and mineralogical data, stratigraphy, petrography, three compositionally different but related magmas, crystallization sequences, cut by breccia pipes of bronzite pegmatoid (in third), nickel in pipes
    • …
    corecore