100 research outputs found

    Effective Hamiltonian Theory and Its Applications in Quantum Information

    Full text link
    This paper presents a useful compact formula for deriving an effective Hamiltonian describing the time-averaged dynamics of detuned quantum systems. The formalism also works for ensemble-averaged dynamics of stochastic systems. To illustrate the technique we give examples involving Raman processes, Bloch-Siegert shifts and Quantum Logic Gates.Comment: 5 pages, 3 figures, to be published in Canadian Journal of Physic

    Evaluation Codes from smooth Quadric Surfaces and Twisted Segre Varieties

    Full text link
    We give the parameters of any evaluation code on a smooth quadric surface. For hyperbolic quadrics the approach uses elementary results on product codes and the parameters of codes on elliptic quadrics are obtained by detecting a BCH structure of these codes and using the BCH bound. The elliptic quadric is a twist of the surface P^1 x P^1 and we detect a similar BCH structure on twists of the Segre embedding of a product of any d copies of the projective line.Comment: 10 pages. Presented at the conference Workshop on Coding theory and Cryptography 201

    Dispersive Manipulation of Paired Superconducting Qubits

    Full text link
    We combine the ideas of qubit encoding and dispersive dynamics to enable robust and easy quantum information processing (QIP) on paired superconducting charge boxes sharing a common bias lead. We establish a decoherence free subspace on these and introduce universal gates by dispersive interaction with a LC resonator and inductive couplings between the encoded qubits. These gates preserve the code space and only require the established local symmetry and the control of the voltage bias.Comment: 5 pages, incl. 1 figur

    Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    Full text link
    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.Comment: 25 pages, 7 figure

    Integrated Brain Atlas for Unbiased Mapping of Nervous System Effects Following Liraglutide Treatment

    Get PDF
    Light Sheet Fluorescence Microscopy (LSFM) of whole organs, in particular the brain, offers a plethora of biological data imaged in 3D. This technique is however often hindered by cumbersome non-Automated analysis methods. Here we describe an approach to fully automate the analysis by integrating with data from the Allen Institute of Brain Science (AIBS), to provide precise assessment of the distribution and action of peptide-based pharmaceuticals in the brain. To illustrate this approach, we examined the acute central nervous system effects of the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide. Peripherally administered liraglutide accessed the hypothalamus and brainstem, and led to activation in several brain regions of which most were intersected

    Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation.

    Get PDF
    Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
    corecore