11 research outputs found

    Quantisations of piecewise affine maps on the torus and their quantum limits

    Full text link
    For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measures of the classical system, the so called quantum limits, and one would like to understand which invariant measures can occur that way, thereby classifying the semiclassical behaviour of eigenfunctions. We introduce a class of maps on the torus for whose quantisations we can understand the set of quantum limits in great detail. In particular we can construct examples of ergodic maps which have singular ergodic measures as quantum limits, and examples of non-ergodic maps where arbitrary convex combinations of absolutely continuous ergodic measures can occur as quantum limits. The maps we quantise are obtained by cutting and stacking

    (Non)Invariance of dynamical quantities for orbit equivalent flows

    Full text link
    We study how dynamical quantities such as Lyapunov exponents, metric entropy, topological pressure, recurrence rates, and dimension-like characteristics change under a time reparameterization of a dynamical system. These quantities are shown to either remain invariant, transform according to a multiplicative factor or transform through a convoluted dependence that may take the form of an integral over the initial local values. We discuss the significance of these results for the apparent non-invariance of chaos in general relativity and explore applications to the synchronization of equilibrium states and the elimination of expansions

    On the energy functional on Finsler manifolds and applications to stationary spacetimes

    Full text link
    In this paper we first study some global properties of the energy functional on a non-reversible Finsler manifold. In particular we present a fully detailed proof of the Palais--Smale condition under the completeness of the Finsler metric. Moreover we define a Finsler metric of Randers type, which we call Fermat metric, associated to a conformally standard stationary spacetime. We shall study the influence of the Fermat metric on the causal properties of the spacetime, mainly the global hyperbolicity. Moreover we study the relations between the energy functional of the Fermat metric and the Fermat principle for the light rays in the spacetime. This allows us to obtain existence and multiplicity results for light rays, using the Finsler theory. Finally the case of timelike geodesics with fixed energy is considered.Comment: 23 pages, AMSLaTeX. v4 matches the published versio

    Smooth non-BernoulliK-automorphisms

    No full text
    corecore