19 research outputs found
CDM Accelerating Cosmology as an Alternative to LCDM model
A new accelerating cosmology driven only by baryons plus cold dark matter
(CDM) is proposed in the framework of general relativity. In this model the
present accelerating stage of the Universe is powered by the negative pressure
describing the gravitationally-induced particle production of cold dark matter
particles. This kind of scenario has only one free parameter and the
differential equation governing the evolution of the scale factor is exactly
the same of the CDM model. For a spatially flat Universe, as predicted
by inflation (), it is found that the
effectively observed matter density parameter is ,
where is the constant parameter specifying the CDM particle creation
rate. The supernovae test based on the Union data (2008) requires so that as independently derived from weak
gravitational lensing, the large scale structure and other complementary
observations.Comment: 6 pages, 3 figure
Cosmological constraints on extended Galileon models
The extended Galileon models possess tracker solutions with de Sitter
attractors along which the dark energy equation of state is constant during the
matter-dominated epoch, i.e. w_DE = -1-s, where s is a positive constant. Even
with this phantom equation of state there are viable parameter spaces in which
the ghosts and Laplacian instabilities are absent. Using the observational data
of the supernovae type Ia, the cosmic microwave background (CMB), and baryon
acoustic oscillations, we place constraints on the tracker solutions at the
background level and find that the parameter s is constrained to be s=0.034
(-0.034,+0.327) (95% CL) in the flat Universe. In order to break the degeneracy
between the models we also study the evolution of cosmological density
perturbations relevant to the large-scale structure (LSS) and the
Integrated-Sachs-Wolfe (ISW) effect in CMB. We show that, depending on the
model parameters, the LSS and the ISW effect is either positively or negatively
correlated. It is then possible to constrain viable parameter spaces further
from the observational data of the ISW-LSS cross-correlation as well as from
the matter power spectrum.Comment: 17 pages, 9 figures, uses RevTeX4-
Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
It is only now, with low-frequency radio telescopes, long exposures with
high-resolution X-ray satellites and gamma-ray telescopes, that we are
beginning to learn about the physics in the periphery of galaxy clusters. In
the coming years, Sunyaev-Zeldovich telescopes are going to deliver further
great insights into the plasma physics of these special regions in the
Universe. The last years have already shown tremendous progress with detections
of shocks, estimates of magnetic field strengths and constraints on the
particle acceleration efficiency. X-ray observations have revealed shock fronts
in cluster outskirts which have allowed inferences about the microphysical
structure of shocks fronts in such extreme environments. The best indications
for magnetic fields and relativistic particles in cluster outskirts come from
observations of so-called radio relics, which are megaparsec-sized regions of
radio emission from the edges of galaxy clusters. As these are difficult to
detect due to their low surface brightness, only few of these objects are
known. But they have provided unprecedented evidence for the acceleration of
relativistic particles at shock fronts and the existence of muG strength fields
as far out as the virial radius of clusters. In this review we summarise the
observational and theoretical state of our knowledge of magnetic fields,
relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
UBVRI Light curves of 44 Type Ia supernovae
We present UBVRI photometry of 44 Type la supernovae (SNe la) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SNe la to date, nearly doubling the number of well-observed, nearby SNe la with published multicolor CCD light curves. The large sample of [U-band photometry is a unique addition, with important connections to SNe la observed at high redshift. The decline rate of SN la U-band light curves correlates well with the decline rate in other bands, as does the U - B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional âŒ40% intrinsic scatter compared to the B band
The Future Landscape of High-Redshift Galaxy Cluster Science
Large scale structure and cosmolog
GRANAT/SIGMA observation of the early afterglow from GRB 920723 in soft gamma-rays
SIGLEAvailable from: http://www.mpa-garching.mpg.de / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Neutrino constraints: what large-scale structure and CMB data are telling us?
We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly-a forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis we rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2 sigma detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3 sigma if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain Sigma m(nu) = 0.29(-0.21)(+0.18) eV and Sigma m(nu) = 0.22(-0.18)(+0.17) eV (95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get m(s)(eff) = 0.44(-0.26)(+0.28) eV and Delta N-eff = 0.78(-0.59)(+0.60) = (95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla Lambda CDM model is rejected at more than 3 sigma and a sterile neutrino mass as motivated by accelerator anomaly is within the 2 sigma errors. Conversely, the Ly-alpha data favour vanishing neutrino masses and from the data combination Planck+BAO+Ly-alpha we get the tight upper limits Sigma m(nu) < 0.14 eV and m(s)(eff) < 0.22 eV - Delta N-eff < 1.11 (95%CL) for the active and sterile neutrino model, respectively. Finally, results from the full data combination reflect the tension between the sigma(8) constraints obtained from cluster and shear data and that inferred from Ly-alpha forest measurements; in the active neutrino scenario for both CMB datasets employed, the full data combination yields only an upper limits on Sigma m(nu), while assuming an extra sterile neutrino we still get preference for non-vanishing mass, m(s)(eff) = 0.26(-0.24)(+0.22) eV, and dark contribution to the radiation content, Delta N-eff = 0.82 +/- 0.55