9 research outputs found

    Prevalence of Dal blood type and dog erythrocyte antigens (DEA) 1, 4, and 7 in canine blood donors in Italy and Spain

    Get PDF
    BackgroundThe aim of this study was to determine the prevalence of Dal, and DEA 1, 4, 7 blood types, in a population of canine blood donors from Italy and Spain. Three hundred and twenty blood donor dogs receiving an annual health evaluation were included in the study. DEA 1 blood type was determined using an immunochromatographic strip technique while Dal, DEA 4 and 7 blood types were determined with polyclonal antisera using agglutination on gel columns.ResultsOut of 320 dogs blood typed 7 (2 Cane Corso and 5 Doberman Pinschers) (2.2%) were Dal negative; 137 (42.8%) were positive for DEA 1; 320 (100%) were positive for DEA 4 and 43 (13.4%) were positive for DEA 7.ConclusionThis study showed a similar prevalence of DEA 1, 7 and 4 to that reported in previous studies in the same, and in different, geographic areas, and provides new data on the prevalence of the Dal blood group in Italy and Spain. There was no significant difference (P=0.8409) between prevalence of Dal negative blood types found in our population (2.2%) and the prevalence reported in a canine blood donor population from the USA (2.5%). Our study identified Dal negative dogs in a previously tested breed i.e. Doberman Pinschers, but also the Cane Corso breed was found to have Dal negative dogs

    Primary Immuno-mediated-hemolytic anemia: a retrospective study of 52 dogs from two veterinary teaching hospitals

    No full text
    Primary immune-mediated hemolytic anemia (pIMHA) is a type II hypersensitivity (antibody-dependent cytotoxicity), and is the most common immunehematologic disorder in dogs. It leads mostly to moderate to severe anemia, with subsequent hypoxemia, hypercoagulability, and often fatal outcomes. This retrospective study (2009-2015) examined the clinical and laboratory findings at the presentation visit in dogs with pIMHA, in two veterinary teaching hospitals (Pisa, Italy; Koret, Israel). The study included 52 dogs (Pisa n = 30; Koret n = 22) presented with hematocrit < 30%, combined with ≥ 1 of the following: spherocytosis, positive osmotic fragility test, autoagglutination, positive Coombs' test or positive flow cytometry for RBC-bound IgG and/or IgM. Cases were excluded if positive to tick-borne disease or other infections, based on serology or PCR assay, or if diagnosed with systemic neoplasia. Data retrieved from medical records included the signalment, clinical and laboratory findings. Data regarding gender and breed in the Pisa group was compared with a control population, which included all dogs presented to the Pisa hospital during the study period (n = 19,647). The findings in Pisa and Koret groups were compared. Dogs with pIMHA were mainly middle-aged to elderly dogs, presented with no seasonal pattern. In the Pisa group, neutered females (p = 0.021), as well as Cocker-Spaniel and Maltese dogs (p = 0.025 and p = 0.012, respectively) were overrepresented compared to the control population. The most frequent clinical signs included pale mucous membranes and lethargy (88% each), anorexia (65%), tachycardia (42%), tachypnea (38%), and pigmenturia (35%). The Koret dogs were significantly more icteric, tachycardic and tachypneic compared to the Pisa dogs (p = 0.048, p = 0.017 and p = 0.001, respectively). Anemia was classified as macrocytic-hypochromic (43%), macrocytic-normochromic (27%), macrocytic-hyperchromic (12%), normocytic-normochromic (10%), normocytic hypochromic and normocytic-hyperchromic (4% each). The Koret group had significantly more dogs with anemia classified as hyperchromic (p = 0.001), suggesting higher frequency of hemoglobinemia due to intravascular hemolysis. The common morphological cellular blood anomalies included polychromasia (94%), anisocytosis and metarubricytosis (82% each), spherocytosis and leukocytosis (80% each), neutrophilia (69%), Howell-Jolly bodies and left-shift (49% each), macrothrombocythemia (45%), thrombocytopenia (35%), monocytosis (31%), autoagglutination (27%), hypochromia (16%), poikilocytosis (16%), and schistocytosis (14%). This study confirms previous findings regarding the signalment, clinical and laboratory characteristics of pIMHA in dogs. The microscopic evaluation of the blood smear is a valuable tool in the diagnosis of pIMHA. The Koret group was characterized by a more severe presentation of the disease, likely because this hospital admits more emergency primary care cases

    Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report about the properties of the underlying event measured with ALICE at the LHC in pp and p−Pb collisions at sNN−−−√=5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5, and 1 GeV/c) at mid-pseudorapidity (|η|10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p−Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators

    Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the e+e− pair production at low lepton pair transverse momentum (pT,ee) and low invariant mass (mee) in non-central Pb−Pb collisions at sNN−−−√=5.02 TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity (|ηe|<0.8) as a function of invariant mass (0.4≤mee<2.7 GeV/c2) in the 50−70% and 70−90% centrality classes for pT,ee<0.1 GeV/c, and as a function of pT,ee in three mee intervals in the most peripheral Pb−Pb collisions. Below a pT,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The mee excess spectra are reproduced, within uncertainties, by different predictions of the photon−photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the pT,ee spectra. The measured ⟨p2T,ee⟩−−−−−√ of the excess pT,ee spectrum in peripheral Pb−Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region

    Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report about the properties of the underlying event measured with ALICE at the LHC in pp and p−Pb collisions at sNN−−−√=5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5, and 1 GeV/c) at mid-pseudorapidity (|η|10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p−Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators

    Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the e+e− pair production at low lepton pair transverse momentum (pT,ee) and low invariant mass (mee) in non-central Pb−Pb collisions at sNN−−−√=5.02 TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity (|ηe|<0.8) as a function of invariant mass (0.4≤mee<2.7 GeV/c2) in the 50−70% and 70−90% centrality classes for pT,ee<0.1 GeV/c, and as a function of pT,ee in three mee intervals in the most peripheral Pb−Pb collisions. Below a pT,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The mee excess spectra are reproduced, within uncertainties, by different predictions of the photon−photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the pT,ee spectra. The measured ⟨p2T,ee⟩−−−−−√ of the excess pT,ee spectrum in peripheral Pb−Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region

    Symmetry plane correlations in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at sNN−−−√=2.76 TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    At particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) [1]. The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower [2]. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m and energy E, within a cone of angular size m/E around the emitter [3]. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. Here we show the first direct observation of the QCD dead-cone by using new iterative declustering techniques [4, 5] to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes the first direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron.In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQm_{\rm{Q}} and energy EE, within a cone of angular size mQm_{\rm{Q}}/EE around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics
    corecore