39 research outputs found

    Long Range Hops and the Pair Annihilation Reaction A+A->0: Renormalization Group and Simulation

    Full text link
    A simple example of a non-equilibrium system for which fluctuations are important is a system of particles which diffuse and may annihilate in pairs on contact. The renormalization group can be used to calculate the time dependence of the density of particles, and provides both an exact value for the exponent governing the decay of particles and an epsilon-expansion for the amplitude of this power law. When the diffusion is anomalous, as when the particles perform Levy flights, the critical dimension depends continuously on the control parameter for the Levy distribution. The epsilon-expansion can then become an expansion in a small parameter. We present a renormalization group calculation and compare these results with those of a simulation.Comment: As-published version; two significant errors fixed, two references adde

    Determinant representation for some transition probabilities in the TASEP with second class particles

    Full text link
    We study the transition probabilities for the totally asymmetric simple exclusion process (TASEP) on the infinite integer lattice with a finite, but arbitrary number of first and second class particles. Using the Bethe ansatz we present an explicit expression of these quantities in terms of the Bethe wave function. In a next step it is proved rigorously that this expression can be written in a compact determinantal form for the case where the order of the first and second class particles does not change in time. An independent geometrical approach provides insight into these results and enables us to generalize the determinantal solution to the multi-class TASEP.Comment: Minor revision; journal reference adde

    Autonomous models solvable through the full interval method

    Full text link
    The most general exclusion single species one dimensional reaction-diffusion models with nearest-neighbor interactions which are both autonomous and can be solved exactly through full interval method are introduced. Using a generating function method, the general solution for, FnF_n, the probability that nn consecutive sites be full, is obtained. Some other correlation functions of number operators at nonadjacent sites are also explicitly obtained. It is shown that for a special choice of initial conditions some correlation functions of number operators called full intervals remain uncorrelated

    Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3

    Full text link
    Recent neutron scattering measurements performed on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 (PZN-8%PT) in its cubic phase at 500 K, have revealed an anomalous ridge of inelastic scattering centered ~0.2 A-1 from the zone center (Gehring et al., Phys. Rev. Lett. 84, 5216 (2000)). This ridge of scattering resembles a waterfall when plotted as a phonon dispersion diagram, and extends vertically from the transverse acoustic (TA) branch near 4 meV to the transverse optic (TO) branch near 9 meV. No zone center optic mode was found. We report new results from an extensive neutron scattering study of pure PZN that exhibits the same waterfall feature. We are able to model the dynamics of the waterfall using a simple coupled-mode model that assumes a strongly q-dependent optic mode linewidth Gamma1(q) that increases sharply near 0.2 A-1 as one approaches the zone center. This model was motivated by the results of Burns and Dacol in 1983, who observed the formation of a randomly-oriented local polarization in PZN at temperatures far above its ferroelectric phase transition temperature. The dramatic increase in Gamma1 is believed to occur when the wavelength of the optic mode becomes comparable to the size of the small polarized micro-regions (PMR) associated with this randomly-oriented local polarization, with the consequence that longer wavelength optic modes cannot propagate and become overdamped. Below Tc=410 K, the intensity of the waterfall diminishes. At lowest temperatures ~30 K the waterfall is absent, and we observe the recovery of a zone center transverse optic mode near 10.5 meV.Comment: 8 pages, 9 figures (one color). Submitted to Physical Review

    Diffusion-limited reactions and mortal random walkers in confined geometries

    Full text link
    Motivated by the diffusion-reaction kinetics on interstellar dust grains, we study a first-passage problem of mortal random walkers in a confined two-dimensional geometry. We provide an exact expression for the encounter probability of two walkers, which is evaluated in limiting cases and checked against extensive kinetic Monte Carlo simulations. We analyze the continuum limit which is approached very slowly, with corrections that vanish logarithmically with the lattice size. We then examine the influence of the shape of the lattice on the first-passage probability, where we focus on the aspect ratio dependence: Distorting the lattice always reduces the encounter probability of two walkers and can exhibit a crossover to the behavior of a genuinely one-dimensional random walk. The nature of this transition is also explained qualitatively.Comment: 18 pages, 16 figure

    Disorder and relaxation mode in the lattice dynamics of PbMg1/3_{1/3}Nb2/3_{2/3}O3_3 relaxor ferroelectric

    Full text link
    The low-energy part of vibration spectrum in PbMg1/3_{1/3}Nb2/3_{2/3}O3_3 relaxor ferroelectric was studied by inelastic neutron scattering. We observed the coexistence of a resolution-limited central peak with strong quasielastic scattering. The line-width of the quasielastic component follows a Γ0+Dq2\Gamma_0+Dq^2 dependence. We find that Γ0\Gamma_0 is temperature-dependent. The relaxation time follows the Arrhenius law well. The presence of a relaxation mode associated with quasi-elastic scattering in PMN indicates that order-disorder behaviour plays an important r\^ole in the dynamics of diffuse phase transitions

    Exponents appearing in heterogeneous reaction-diffusion models in one dimension

    Full text link
    We study the following 1D two-species reaction diffusion model : there is a small concentration of B-particles with diffusion constant DBD_B in an homogenous background of W-particles with diffusion constant DWD_W; two W-particles of the majority species either coagulate (W+W⟶WW+W \longrightarrow W) or annihilate (W+W⟶∅W+W \longrightarrow \emptyset) with the respective probabilities pc=(q−2)/(q−1) p_c=(q-2)/(q-1) and pa=1/(q−1)p_a=1/(q-1); a B-particle and a W-particle annihilate (W+B⟶∅W+B \longrightarrow \emptyset) with probability 1. The exponent θ(q,λ=DB/DW)\theta(q,\lambda=D_B/D_W) describing the asymptotic time decay of the minority B-species concentration can be viewed as a generalization of the exponent of persistent spins in the zero-temperature Glauber dynamics of the 1D qq-state Potts model starting from a random initial condition : the W-particles represent domain walls, and the exponent θ(q,λ)\theta(q,\lambda) characterizes the time decay of the probability that a diffusive "spectator" does not meet a domain wall up to time tt. We extend the methods introduced by Derrida, Hakim and Pasquier ({\em Phys. Rev. Lett.} {\bf 75} 751 (1995); Saclay preprint T96/013, to appear in {\em J. Stat. Phys.} (1996)) for the problem of persistent spins, to compute the exponent θ(q,λ)\theta(q,\lambda) in perturbation at first order in (q−1)(q-1) for arbitrary λ\lambda and at first order in λ\lambda for arbitrary qq.Comment: 29 pages. The three figures are not included, but are available upon reques

    Size-dependent Correlation Effects in Ultrafast Optical Dynamics of Metal Nanoparticles

    Full text link
    We study the role of collective surface excitations in the electron relaxation in small metal particles. We show that the dynamically screened electron-electron interaction in a nanoparticle contains a size-dependent correction induced by the surface. This leads to new channels of quasiparticle scattering accompanied by the emission of surface collective excitations. We calculate the energy and temperature dependence of the corresponding rates, which depend strongly on the nanoparticle size. We show that the surface-plasmon-mediated scattering rate of a conduction electron increases with energy, in contrast to that mediated by a bulk plasmon. In noble-metal particles, we find that the dipole collective excitations (surface plasmons) mediate a resonant scattering of d-holes to the conduction band. We study the role of the latter effect in the ultrafast optical dynamics of small nanoparticles and show that, with decreasing nanoparticle size, it leads to a drastic change in the differential absorption lineshape and a strong frequency dependence of the relaxation near the surface plasmon resonance. The experimental implications of our results in ultrafast pump-probe spectroscopy are also discussed.Comment: 29 pages including 6 figure

    Persistence properties of a system of coagulating and annihilating random walkers

    Full text link
    We study a d-dimensional system of diffusing particles that on contact either annihilate with probability 1/(q-1) or coagulate with probability (q-2)/(q-1). In 1-dimension, the system models the zero temperature Glauber dynamics of domain walls in the q-state Potts model. We calculate P(m,t), the probability that a randomly chosen lattice site contains a particle whose ancestors have undergone exactly (m-1) coagulations. Using perturbative renormalization group analysis for d < 2, we show that, if the number of coagulations m is much less than the typical number M(t), then P(m,t) ~ m^(z/d) t^(-theta), with theta=d Q + Q(Q-1/2) epsilon + O(epsilon^2), z=(2Q-1) epsilon + (2 Q-1) (Q-1)(1/2+A Q) epsilon^2 +O(epsilon^3), where Q=(q-1)/q, epsilon =2-d and A =-0.006. M(t) is shown to scale as t^(d/2-delta), where delta = d (1 -Q)+(Q-1)(Q-1/2) epsilon+ O(epsilon^2). In two dimensions, we show that P(m,t) ~ ln(t)^(Q(3-2Q)) ln(m)^((2Q-1)^2) t^(-2Q) for m << t^(2 Q-1). The 1-dimensional results corresponding to epsilon=1 are compared with results from Monte Carlo simulations.Comment: 12 pages, revtex, 5 figure

    Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution

    Full text link
    We study equilibrium properties of a catalytically-activated annihilation A+A→0A + A \to 0 reaction taking place on a one-dimensional chain of length NN (N→∞N \to \infty) in which some segments (placed at random, with mean concentration pp) possess special, catalytic properties. Annihilation reaction takes place, as soon as any two AA particles land onto two vacant sites at the extremities of the catalytic segment, or when any AA particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another AA particle. Non-catalytic segments are inert with respect to reaction and here two adsorbed AA particles harmlessly coexist. For both "annealed" and "quenched" disorder in placement of the catalytic segments, we calculate exactly the disorder-average pressure per site. Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.Comment: AMSTeX, 27 pages + 4 figure
    corecore