8 research outputs found

    On the asymptotic expansion of the solutions of the separated nonlinear Schroedinger equation

    Full text link
    Nonlinear Schr\"odinger equation (with the Schwarzian initial data) is important in nonlinear optics, Bose condensation and in the theory of strongly correlated electrons. The asymptotic solutions in the region x/t=O(1)x/t={\cal O}(1), tt\to\infty, can be represented as a double series in t1t^{-1} and lnt\ln t. Our current purpose is the description of the asymptotics of the coefficients of the series.Comment: 11 pages, LaTe

    Universality of a double scaling limit near singular edge points in random matrix models

    Full text link
    We consider unitary random matrix ensembles Z_{n,s,t}^{-1}e^{-n tr V_{s,t}(M)}dM on the space of Hermitian n x n matrices M, where the confining potential V_{s,t} is such that the limiting mean density of eigenvalues (as n\to\infty and s,t\to 0) vanishes like a power 5/2 at a (singular) endpoint of its support. The main purpose of this paper is to prove universality of the eigenvalue correlation kernel in a double scaling limit. The limiting kernel is built out of functions associated with a special solution of the P_I^2 equation, which is a fourth order analogue of the Painleve I equation. In order to prove our result, we use the well-known connection between the eigenvalue correlation kernel and the Riemann-Hilbert (RH) problem for orthogonal polynomials, together with the Deift/Zhou steepest descent method to analyze the RH problem asymptotically. The key step in the asymptotic analysis will be the construction of a parametrix near the singular endpoint, for which we use the model RH problem for the special solution of the P_I^2 equation. In addition, the RH method allows us to determine the asymptotics (in a double scaling limit) of the recurrence coefficients of the orthogonal polynomials with respect to the varying weights e^{-nV_{s,t}} on \mathbb{R}. The special solution of the P_I^2 equation pops up in the n^{-2/7}-term of the asymptotics.Comment: 32 pages, 3 figure

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    Painleve I, Coverings of the Sphere and Belyi Functions

    Full text link
    The theory of poles of solutions of Painleve-I is equivalent to the Nevanlinna problem of constructing a meromorphic function ramified over five points - counting multiplicities - and without critical points. We construct such meromorphic functions as limit of rational ones. In the case of the tritronquee solution these rational functions are Belyi functions.Comment: 33 pages, many figures. Version 2: minor corrections and minor changes in the bibliograph

    Universality in the two matrix model with a monomial quartic and a general even polynomial potential

    Full text link
    In this paper we studied the asymptotic eigenvalue statistics of the 2 matrix model with a quartic monomial and a general even polynomial potential. We studied the correlation kernel for the eigenvalues of one of the matrices in asymptotic limit. We extended the results of Duits and Kuijlaars to the case when the limiting eigenvalue density for one of the matrices is supported on multiple intervals. The results are achieved by constructing the parametrix to a Riemann-Hilbert problem obtained by Duits and Kuijlaars with theta functions and then showing that this parametrix is well-defined by studying the theta divisor.Comment: 35 pages, 8 figure

    Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach

    Full text link
    We obtain an asymptotic expansion for the solution of the Cauchy problem for the Korteweg-de Vries (KdV) equation in the small dispersion limit near the point of gradient catastrophe (x_c,t_c) for the solution of the dispersionless equation. The sub-leading term in this expansion is described by the smooth solution of a fourth order ODE, which is a higher order analogue to the Painleve I equation. This is in accordance with a conjecture of Dubrovin, suggesting that this is a universal phenomenon for any Hamiltonian perturbation of a hyperbolic equation. Using the Deift/Zhou steepest descent method applied on the Riemann-Hilbert problem for the KdV equation, we are able to prove the asymptotic expansion rigorously in a double scaling limit.Comment: 30 page
    corecore