220 research outputs found

    Exactly solvable path integral for open cavities in terms of quasinormal modes

    Full text link
    We evaluate the finite-temperature Euclidean phase-space path integral for the generating functional of a scalar field inside a leaky cavity. Provided the source is confined to the cavity, one can first of all integrate out the fields on the outside to obtain an effective action for the cavity alone. Subsequently, one uses an expansion of the cavity field in terms of its quasinormal modes (QNMs)-the exact, exponentially damped eigenstates of the classical evolution operator, which previously have been shown to be complete for a large class of models. Dissipation causes the effective cavity action to be nondiagonal in the QNM basis. The inversion of this action matrix inherent in the Gaussian path integral to obtain the generating functional is therefore nontrivial, but can be accomplished by invoking a novel QNM sum rule. The results are consistent with those obtained previously using canonical quantization.Comment: REVTeX, 26 pages, submitted to Phys. Rev.

    Charge Screening Effect in Metallic Carbon Nanotubes

    Full text link
    Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.Comment: 11 pages, 6 figure

    Scaling analysis of Schottky barriers at metal-embedded semiconducting carbon nanotube interfaces

    Full text link
    We present an atomistic self-consistent tight-binding study of the electronic and transport properties of metal-semiconducting carbon nanotube interfaces as a function of the nanotube channel length when the end of the nanotube wire is buried inside the electrodes. We show that the lineup of the nanotube band structure relative to the metal Fermi-level depends strongly on the metal work function but weakly on the details of the interface. We analyze the length-dependent transport characteristics, which predicts a transition from tunneling to thermally-activated transport with increasing nanotube channel length.Comment: To appear in Phys.Rev.B Rapid Communications. Color figures available in PRB online versio

    Quantification of within- and between-pen transmission of Fouth-and-Mouth disease virus in pigs

    Get PDF
    Quantified transmission parameters of Foot-and-Mouth Disease Virus (FMDV) are needed for epidemic models used for control and surveillance. In this study, we quantified the within- and between-pen transmission of FMDV in groups of pigs by estimating the daily transmission rate , i.e. the number of secondary infections caused by one infectious pig during one day, using an SIR (susceptible-infectious-removed) model. Within-pen transmission was studied in four groups of ten pigs in which 5 infected and 5 susceptible pigs had direct contact; between-pen transmission was studied in one group of ten pigs in which 5 infected and 5 susceptible pigs had indirect contact. Daily results of virus isolation of oropharyngeal fluid were used to quantify the transmission rate , using Generalised Linear Modelling (GLM) and a maximum likelihood method. In addition, we estimated the expected time to infection of the first pig within a pen Tw and in the indirect-contact pen Tb. The between-pen transmission rate b was estimated to be 0.59 (0.083-4.18) per day, which was significantly lower than the within-pen transmission rate w of 6.14 (3.75-10.06). Tw was 1.6 h, and Tb was 16 h. Our results show that the transmission rate is influenced by contact structure between pigs

    A 'civilized' drink and a 'civilizing' industry: wine growing and cultural imagining in colonial New South Wales

    Get PDF
    My starting point for this thesis was the absence of a foundation history of Australian wine growing conducted by an historian rather than researchers in other disciplines or the media. I have used existing work on wine history in New South Wales from 1788 to 1901 alongside a significant body of new research to create an historical argument suitable for incorporation into more broadly-themed narratives of Australian history and to inform studies of wine growing in other academic fields. My main argument is that although wine growing proved of little economic value in colonial primary production compared with nation-building commodities - such as pastoralism, wheat growing and gold - advocates of the cultivation of wine grapes believed wine growing embodied beneficial, even transformative, cultural value so they persisted in attempting to create a ‘civilizing’ industry producing a ‘civilized’ drink despite lacklustre consumption of their product and very modest profits. Several times, from 1788 to 1901, these advocates spoke out or wrote about wine and wine growing as capable of creating order in a wild or ‘savage’ landscape and within a settler society shaped culturally by shifting adaptations to both imported and ‘native’ influences in agriculture as well as alcohol production, consumption and distribution. While the methodological framework employed here falls mainly within cultural and economic history, sociological theories have contributed to findings on causation. The result is a comprehensive narrative of colonial wine growing in New South Wales enriched by links to key developments in Australian colonial history and with reference to wine growing in other British colonies or former territories

    Vacuum structure of Toroidal Carbon Nanotubes

    Full text link
    Low energy excitations in carbon nanotubes can be described by an effective field theory of two components spinor. It is pointed out that the chiral anomaly in 1+1 dimensions should be observed in a metallic toroidal carbon nanotube on a planar geometry with varying magnetic field. We propose an experimental setup for studying this quantum effect. We also analyze the vacuum structure of the metallic toroidal carbon nanotube including the Coulomb interactions and discuss some effects of external charges on the vacuum.Comment: 10 pages, 11 figure

    Critical scaling of the a.c. conductivity for a superconductor above Tc

    Full text link
    We consider the effects of critical superconducting fluctuations on the scaling of the linear a.c. conductivity, \sigma(\omega), of a bulk superconductor slightly above Tc in zero applied magnetic field. The dynamic renormalization- group method is applied to the relaxational time-dependent Ginzburg-Landau model of superconductivity, with \sigma(\omega) calculated via the Kubo formula to O(\epsilon^{2}) in the \epsilon = 4 - d expansion. The critical dynamics are governed by the relaxational XY-model renormalization-group fixed point. The scaling hypothesis \sigma(\omega) \sim \xi^{2-d+z} S(\omega \xi^{z}) proposed by Fisher, Fisher and Huse is explicitly verified, with the dynamic exponent z \approx 2.015, the value expected for the d=3 relaxational XY-model. The universal scaling function S(y) is computed and shown to deviate only slightly from its Gaussian form, calculated earlier. The present theory is compared with experimental measurements of the a.c. conductivity of YBCO near Tc, and the implications of this theory for such experiments is discussed.Comment: 16 pages, submitted to Phys. Rev.
    • …
    corecore