57 research outputs found

    New features of collective motion of intrinsic degrees of freedom. Toward a possible way to classify the intrinsic states

    Full text link
    Three exactly solvable Hamiltonians of complex structure are studied in the framework of a semi-classical approach. The quantized trajectories for intrinsic coordinates correspond to energies which may be classified in collective bands. For two of the chosen Hamiltonians the symmetry SU2xSU2 is the appropriate one to classify the eigenvalues in the laboratory frame. Connections of results presented here with the molecular spectrum and Moszkowski model are pointed out. The present approach suggests that the intrinsic states, which in standard formalisms are heading rotational bands, are forming themselves "rotational" bands, the rotations being performed in a fictious boson space.Comment: 33 pages, 9 figure

    Strongly damped nuclear collisions: zero or first sound ?

    Get PDF
    The relaxation of the collective quadrupole motion in the initial stage of a central heavy ion collision at beam energies Elab=5Ă·20E_{lab}=5\div20 AMeV is studied within a microscopic kinetic transport model. The damping rate is shown to be a non-monotonic function of E_{lab} for a given pair of colliding nuclei. This fact is interpreted as a manifestation of the zero-to-first sound transition in a finite nuclear system.Comment: 15 pages, 4 figure

    Collective modes of asymmetric nuclear matter in Quantum HadroDynamics

    Full text link
    We discuss a fully relativistic Landau Fermi liquid theory based on the Quantum Hadro-Dynamics (QHDQHD) effective field picture of Nuclear Matter ({\it NM}). From the linearized kinetic equations we get the dispersion relations of the propagating collective modes. We focus our attention on the dynamical effects of the interplay between scalar and vector channel contributions. A beautiful ``mirror'' structure in the form of the dynamical response in the isoscalar/isovector degree of freedom is revealed, with a complete parallelism in the role respectively played by the compressibility and the symmetry energy. All that strongly supports the introduction of an explicit coupling to the scalar-isovector channel of the nucleon-nucleon interaction. In particular we study the influence of this coupling (to a ÎŽ\delta-meson-like effective field) on the collective response of asymmetric nuclear matter (ANMANM). Interesting contributions are found on the propagation of isovector-like modes at normal density and on an expected smooth transition to isoscalar-like oscillations at high baryon density. Important ``chemical'' effects on the neutron-proton structure of the mode are shown. For dilute ANMANM we have the isospin distillation mechanism of the unstable isoscalar-like oscillations, while at high baryon density we predict an almost pure neutron wave structure of the propagating sounds.Comment: 18 pages (LATEX), 8 Postscript figures, uses "epsfig

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Revealing genome-wide mRNA and microRNA expression patterns in leukemic cells highlighted “hsa-miR-2278” as a tumor suppressor for regain of chemotherapeutic imatinib response due to targeting STAT5A

    No full text
    PubMed ID: 25953263BCR-ABL oncoprotein stimulates cell proliferation and inhibits apoptosis in chronic myeloid leukemia (CML). For cure, imatinib is a widely used tyrosine kinase inhibitor, but developing chemotherapeutic resistance has to be overcome. In this study, we aimed to determine differing genome-wide microRNA (miRNA) and messenger RNA (mRNA) expression profiles in imatinib resistant (K562/IMA-3 ”M) and parental cells by targeting STAT5A via small interfering RNA (siRNA) applications. After determining possible therapeutic miRNAs, we aimed to check their effects upon cell viability and proliferation, apoptosis, and find a possible miRN
    • 

    corecore