10 research outputs found

    The asymptotic limits of zero modes of massless Dirac operators

    Full text link
    Asymptotic behaviors of zero modes of the massless Dirac operator H=αD+Q(x)H=\alpha\cdot D + Q(x) are discussed, where α=(α1,α2,α3)\alpha= (\alpha_1, \alpha_2, \alpha_3) is the triple of 4×44 \times 4 Dirac matrices, D=1ix D=\frac{1}{i} \nabla_x, and Q(x)=(qjk(x))Q(x)=\big(q_{jk} (x) \big) is a 4×44\times 4 Hermitian matrix-valued function with qjk(x)Cρ| q_{jk}(x) | \le C ^{-\rho} , ρ>1\rho >1. We shall show that for every zero mode ff, the asymptotic limit of x2f(x)|x|^2f(x) as x+|x| \to +\infty exists. The limit is expressed in terms of an integral of Q(x)f(x)Q(x)f(x).Comment: 9 page

    Chern-Simons action for zero-mode supporting gauge fields in three dimensions

    Get PDF
    Recent results on zero modes of the Abelian Dirac operator in three dimensions support to some degree the conjecture that the Chern-Simons action admits only certain quantized values for gauge fields that lead to zero modes of the corresponding Dirac operator. Here we show that this conjecture is wrong by constructing an explicit counter-example.Comment: version as published in PRD, minor change

    A simple proof of Hardy-Lieb-Thirring inequalities

    Get PDF
    We give a short and unified proof of Hardy-Lieb-Thirring inequalities for moments of eigenvalues of fractional Schroedinger operators. The proof covers the optimal parameter range. It is based on a recent inequality by Solovej, Soerensen, and Spitzer. Moreover, we prove that any non-magnetic Lieb-Thirring inequality implies a magnetic Lieb-Thirring inequality (with possibly a larger constant).Comment: 12 page

    Scaling Limits for the System of Semi-Relativistic Particles Coupled to a Scalar Bose Field

    Full text link
    In this paper the Hamiltonian for the system of semi-relativistic particles interacting with a scalar bose field is investigated. A scaled total Hamiltonian of the system is defined and its scaling limit is considered. Then the semi-relativistic Schrodinger operator with an effective potential is derived
    corecore