235 research outputs found

    Mean-field Phase Diagram of Two-Dimensional Electrons with Disorder in a Weak Magnetic Field

    Get PDF
    We study two-dimensional interacting electrons in a weak perpendicular magnetic field with the filling factor ν≫1\nu \gg 1 and in the presence of a quenched disorder. In the framework of the Hartree-Fock approximation, we obtain the mean-field phase diagram for the partially filled highest Landau level. We find that the CDW state can exist if the Landau level broadening 1/2τ1/2\tau does not exceed the critical value 1/2τc=0.038ωH1/2\tau_{c}=0.038\omega_{H}. Our analysis of weak crystallization corrections to the mean-field results shows that these corrections are of the order of (1/ν)2/3≪1(1/\nu)^{2/3}\ll 1 and therefore can be neglected

    Shubnikov-de Haas oscillations near the metal-insulator transition in a two-dimensional electron system in silicon

    Full text link
    We have studied Shubnikov-de Haas oscillations in a two-dimensional electron system in silicon at low electron densities. Near the metal-insulator transition, only "spin" minima of the resistance at Landau-level filling factors 2, 6, 10, and 14 are seen, while the "cyclotron" minima at filling factors 4, 8, and 12 disappear. A simple explanation of the observed behavior requires a giant enhancement of the spin splitting near the metal-insulator transition.Comment: 4 pages, postscript figures include

    Atmospheric lepton fluxes at ultrahigh energies

    Full text link
    In order to estimate the possibility to observe exotic physics in a neutrino telescope, it is essential to first understand the flux of atmospheric neutrinos, muons and dimuons. We study the production of these leptons by high-energy cosmic rays. We identify three main sources of muons of energy E > 10^6 GeV: the weak decay of charm and bottom mesons and the electromagnetic decay of unflavored mesons. Contrary to the standard assumption, we find that eta mesons, not the prompt decay of charm hadrons, are the dominant source of atmospheric muons at these energies. We show that, as a consequence, the ratio between the neutrino and muon fluxes is significantly reduced. For dimuons, which may be a background for long-lived staus produced near a neutrino telescope, we find that pairs of E ~ 10^7 GeV forming an angle above 10^-6 rad are produced through D (80%) or B (10%) meson decay and through Drell-Yan proceses (10%). The frequency of all these processes has been evaluated using the jet code PYTHIA.Comment: 10 pages, 4 figures; published versio

    Sharp increase of the effective mass near the critical density in a metallic 2D electron system

    Full text link
    We find that at intermediate temperatures, the metallic temperature dependence of the conductivity \sigma(T) of 2D electrons in silicon is described well by a recent interaction-based theory of Zala et al. (Phys. Rev. B 64, 214204 (2001)). The tendency of the slope d\sigma/dT to diverge near the critical electron density is in agreement with the previously suggested ferromagnetic instability in this electron system. Unexpectedly, it is found to originate from the sharp enhancement of the effective mass, while the effective Lande g factor remains nearly constant and close to its value in bulk silicon

    Muon Capture on the Proton and Deuteron

    Full text link
    By measuring the lifetime of the negative muon in pure protium (hydrogen-1), the MuCap experiment determines the rate of muon capture on the proton, from which the proton's pseudoscalar coupling g_p may be inferred. A precision of 15% for g_p has been published; this is a step along the way to a goal of 7%. This coupling can be calculated precisely from heavy baryon chiral perturbation theory and therefore permits a test of QCD's chiral symmetry. Meanwhile, the MuSun experiment is in its final design stage; it will measure the rate of muon capture on the deuteron using a similar technique. This process can be related through pionless effective field theory and chiral perturbation theory to other two-nucleon reactions of astrophysical interest, including proton-proton fusion and deuteron breakup.Comment: Submitted to the proceedings of the 2007 Advanced Studies Institute on Symmetries and Spin (SPIN-Praha-2007

    Origin of the shadow Fermi surface in Bi-based cuprates

    Get PDF
    We used angle-resolved photoemission spectroscopy to study the shadow Fermi surface in one layer Bi2Sr1.6La0.4CuO6+delta and two layer (Bi,Pb)2Sr2CaCu2O8+delta. We find the shadow band to have the same peakwidth and dispersion as the main band. In addition, the shadow band/main band intensity ratio is found to be binding energy independent. Consequently, it is concluded that the shadow bands in Bi-based HTSC do not originate from antiferromagnetic interactions but have a structural origin.Comment: 10 pages, 2 figure

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    Charge Screening Effect in Metallic Carbon Nanotubes

    Full text link
    Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.Comment: 11 pages, 6 figure

    Quantum magneto-oscillations in a two-dimensional Fermi liquid

    Full text link
    Quantum magneto-oscillations provide a powerfull tool for quantifying Fermi-liquid parameters of metals. In particular, the quasiparticle effective mass and spin susceptibility are extracted from the experiment using the Lifshitz-Kosevich formula, derived under the assumption that the properties of the system in a non-zero magnetic field are determined uniquely by the zero-field Fermi-liquid state. This assumption is valid in 3D but, generally speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied only if the oscillations are strongly damped by thermal smearing and disorder. In this work, the effects of interactions and disorder on the amplitude of magneto-oscillations in 2D are studied. It is found that the effective mass diverges logarithmically with decreasing temperature signaling a deviation from the Fermi-liquid behavior. It is also shown that the quasiparticle lifetime due to inelastic interactions does not enter the oscillation amplitude, although these interactions do renormalize the effective mass. This result provides a generalization of the Fowler-Prange theorem formulated originally for the electron-phonon interaction.Comment: 4 pages, 1 figur

    Electron scattering in multi-wall carbon-nanotubes

    Full text link
    We analyze two scattering mechanisms that might cause intrinsic electronic resistivity in multi-wall carbon nanotubes: scattering by dopant impurities, and scattering by inter-tube electron-electron interaction. We find that for typically doped multi-wall tubes backward scattering at dopants is by far the dominating effect.Comment: 6 pages, 2 figures, to appear in Phys. Rev.
    • …
    corecore