2,142 research outputs found
First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions
We report the first measurement of monoenergetic muon neutrino charged
current interactions. MiniBooNE has isolated 236 MeV muon neutrino events
originating from charged kaon decay at rest ()
at the NuMI beamline absorber. These signal -carbon events are
distinguished from primarily pion decay in flight and
backgrounds produced at the target station and decay pipe
using their arrival time and reconstructed muon energy. The significance of the
signal observation is at the 3.9 level. The muon kinetic energy,
neutrino-nucleus energy transfer (), and total cross
section for these events is extracted. This result is the first known-energy,
weak-interaction-only probe of the nucleus to yield a measurement of
using neutrinos, a quantity thus far only accessible through electron
scattering.Comment: 6 pages, 4 figure
Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering
We discuss a technique for measuring a charged particle's momentum by means
of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time
projection chamber (LArTPC). This method does not require the full particle
ionization track to be contained inside of the detector volume as other track
momentum reconstruction methods do (range-based momentum reconstruction and
calorimetric momentum reconstruction). We motivate use of this technique,
describe a tuning of the underlying phenomenological formula, quantify its
performance on fully contained beam-neutrino-induced muon tracks both in
simulation and in data, and quantify its performance on exiting muon tracks in
simulation. Using simulation, we have shown that the standard Highland formula
should be re-tuned specifically for scattering in liquid argon, which
significantly improves the bias and resolution of the momentum measurement.
With the tuned formula, we find agreement between data and simulation for
contained tracks, with a small bias in the momentum reconstruction and with
resolutions that vary as a function of track length, improving from about 10%
for the shortest (one meter long) tracks to 5% for longer (several meter)
tracks. For simulated exiting muons with at least one meter of track contained,
we find a similarly small bias, and a resolution which is less than 15% for
muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first
estimate of the MCS momentum measurement capabilities of MicroBooNE for high
momentum exiting tracks
Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE
The single-phase liquid argon time projection chamber (LArTPC) provides a
large amount of detailed information in the form of fine-grained drifted
ionization charge from particle traces. To fully utilize this information, the
deposited charge must be accurately extracted from the raw digitized waveforms
via a robust signal processing chain. Enabled by the ultra-low noise levels
associated with cryogenic electronics in the MicroBooNE detector, the precise
extraction of ionization charge from the induction wire planes in a
single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event
display images, and quantitatively demonstrated via waveform-level and
track-level metrics. Improved performance of induction plane calorimetry is
demonstrated through the agreement of extracted ionization charge measurements
across different wire planes for various event topologies. In addition to the
comprehensive waveform-level comparison of data and simulation, a calibration
of the cryogenic electronics response is presented and solutions to various
MicroBooNE-specific TPC issues are discussed. This work presents an important
improvement in LArTPC signal processing, the foundation of reconstruction and
therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at
arXiv:1802.0870
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
The low-noise operation of readout electronics in a liquid argon time
projection chamber (LArTPC) is critical to properly extract the distribution of
ionization charge deposited on the wire planes of the TPC, especially for the
induction planes. This paper describes the characteristics and mitigation of
the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase
LArTPC comprises two induction planes and one collection sense wire plane with
a total of 8256 wires. Current induced on each TPC wire is amplified and shaped
by custom low-power, low-noise ASICs immersed in the liquid argon. The
digitization of the signal waveform occurs outside the cryostat. Using data
from the first year of MicroBooNE operations, several excess noise sources in
the TPC were identified and mitigated. The residual equivalent noise charge
(ENC) after noise filtering varies with wire length and is found to be below
400 electrons for the longest wires (4.7 m). The response is consistent with
the cold electronics design expectations and is found to be stable with time
and uniform over the functioning channels. This noise level is significantly
lower than previous experiments utilizing warm front-end electronics.Comment: 36 pages, 20 figure
Impediments in Energy Efficient Building Retrofitting: With Special Reference to Public University Buildings in Sri Lanka
In a world where sustainability and energy conservation have taken center stage, the building sector, which happens to be the largest consumer of energy, finds itself at a critical crossroads. As sustainability and energy reduction become increasingly important, building retrofitting is recognized as a viable and sustainable solution. Retrofitting involves integrating new features and technology into existing buildings to enhance their efficiency. Despite the acknowledged need for building retrofitting, there is relatively low concern within the public sector, including university buildings. Various barriers hinder the adoption, implementation, and operation of energy-efficient retrofits in public university buildings in Sri Lanka. This study aimed to investigate these impediments. Qualitative methods were employed, and five professionals, including three architects and two institutional hierarchical heads in Finance and Legal Units, were interviewed. Data analysis was conducted using content analysis. The findings highlighted financial, procurement, energy assessment, technical, and legal aspects as barriers to energy-efficient retrofitting in public university buildings. Among these, technical barriers emerged as the predominant impeding category. Therefore, the authors recommend future studies to focus on in-depth examinations of technical barriers and their impacts on building retrofitting. Authors suggested several policy level implications as well
Measurements of , K, p and spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS
Measurements of inclusive spectra and mean multiplicities of ,
K, p and produced in inelastic p+p interactions at
incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ( 6.3,
7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super
Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer.
Spectra are presented as function of rapidity and transverse momentum and are
compared to predictions of current models. The measurements serve as the
baseline in the NA61/SHINE study of the properties of the onset of
deconfinement and search for the critical point of strongly interacting matter
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
- …
