266,506 research outputs found

    Wave/current interaction model

    Get PDF
    The wave-current interaction for the application to remote sensing data via numerical simulations and data comparison is modelled. Using the field data of surface current shear, wind condition and ambient wave spectrum, the numerical simulations of directional wave spectrum evolution were used to interpret and to compare with the aircraft data from Radar Ocean Wave Spectrometer (ROWS) and Surface Contour Radar (SCR) across the front during Frontal Air Sea Interaction Experiment (FASINEX). The wave-ice interaction was inspired by the observation of large amplitude waves hundreds of kms inside the ice pack in the Weddell Sea, resulting in breakup of the ice pack. The developed analysis of processes includes the refraction of waves at the pack edge, the effects of pack compression on wave propagation, wave train stability and buckling stability in the ice pack. Sources of pack compression and interaction between wave momentum and pack compression are investigated. Viscous camping of propagating waves in the marginal ice zone are also studied. The analysis suggests an explanation for the change in wave dispersion observed from the ship and the sequence of processes that cause ice pack breakup, pressure ridge formation and the formation of open bands of water

    Mass estimate of the Swift J 164449.3+573451 supermassive black hole based on the 3:2 QPO resonance hypothesis

    Full text link
    A dormant Swift source J 164449.3+573451 (Sw 164449+57)recently experienced a powerful outburst, caused most probably by a tidal disruption of a star by the super-massive black hole at the center of the source. During the outburst, a quasi periodic oscillation (QPO) was detected in the observed X-ray flux from Sw 164449+57. We show that if the observed QPO belongs to a "3:2 twin peak QPO" (with the second frequency not observed), the mass of the black hole in Sw 164449+57 is rather low, M ~ 10^5 M_sun, and the source belongs to a class of intermediate mass black holes. The low mass of the source has been pointed out previously by several authors.Comment: Accepted by Astronomy and Astrophysic

    No-passing Rule in the Ground State Evolution of the Random-Field Ising Model

    Full text link
    We exactly prove the no-passing rule in the ground state evolution of the random-field Ising model (RFIM) with monotonically varying external field. In particular, we show that the application of the no-passing rule can speed up the calculation of the zero-temperature equilibrium M(H)M(H) curve dramatically.Comment: 7 pages, 4 figure

    Critical point of Nf=3N_f = 3 QCD from lattice simulations in the canonical ensemble

    Full text link
    A canonical ensemble algorithm is employed to study the phase diagram of Nf=3N_f = 3 QCD using lattice simulations. We lock in the desired quark number sector using an exact Fourier transform of the fermion determinant. We scan the phase space below TcT_c and look for an S-shape structure in the chemical potential, which signals the coexistence phase of a first order phase transition in finite volume. Applying Maxwell construction, we determine the boundaries of the coexistence phase at three temperatures and extrapolate them to locate the critical point. Using an improved gauge action and improved Wilson fermions on lattices with a spatial extent of 1.8 \fm and quark masses close to that of the strange, we find the critical point at TE=0.925(5)TcT_E = 0.925(5) T_c and baryon chemical potential ÎĽBE=2.60(8)Tc\mu_B^E = 2.60(8) T_c.Comment: 5 pages, 7 figures, references added, published versio

    Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data

    Full text link
    The k-means clustering is one of the most popular clustering algorithms in data mining. Recently a lot of research has been concentrated on the algorithm when the dataset is divided into multiple parties or when the dataset is too large to be handled by the data owner. In the latter case, usually some servers are hired to perform the task of clustering. The dataset is divided by the data owner among the servers who together perform the k-means and return the cluster labels to the owner. The major challenge in this method is to prevent the servers from gaining substantial information about the actual data of the owner. Several algorithms have been designed in the past that provide cryptographic solutions to perform privacy preserving k-means. We provide a new method to perform k-means over a large set using multiple servers. Our technique avoids heavy cryptographic computations and instead we use a simple randomization technique to preserve the privacy of the data. The k-means computed has exactly the same efficiency and accuracy as the k-means computed over the original dataset without any randomization. We argue that our algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems Security. Springer, Cham, 201

    Identification of photons in double beta-decay experiments using segmented germanium detectors - studies with a GERDA Phase II prototype detector

    Get PDF
    The sensitivity of experiments searching for neutrinoless double beta-decay of germanium was so far limited by the background induced by external gamma-radiation. Segmented germanium detectors can be used to identify photons and thus reduce this background component. The GERmanium Detector Array, GERDA, will use highly segmented germanium detectors in its second phase. The identification of photonic events is investigated using a prototype detector. The results are compared with Monte Carlo data.Comment: 20 pages, 7 figures, to be submitted to NIM-
    • …
    corecore