125 research outputs found

    Paramagnon dispersion in β\beta-FeSe observed by Fe LL-edge resonant inelastic x-ray scattering

    Full text link
    We report an Fe LL-edge resonant inelastic x-ray scattering (RIXS) study of the unusual superconductor β\beta-FeSe. The high energy resolution of this RIXS experiment (≈ \approx\,55 \,meV FWHM) made it possible to resolve low-energy excitations of the Fe 3d3d manifold. These include a broad peak which shows dispersive trends between 100-200 \,meV along the (π,0)(\pi,0) and (π,π)(\pi,\pi) directions of the one-Fe square reciprocal lattice, and which can be attributed to paramagnon excitations. The multi-band valence state of FeSe is among the most metallic in which such excitations have been discerned by soft x-ray RIXS

    Possible strong electron-lattice interaction and giant magneto-elastic effects in Fe-pnictides

    Full text link
    The possibility for an appreciable many-body contribution to the electron-phonon interaction (EPI) in Fe-pnictides is discussed in the model where EPI is due to the electronic polarization of As- ions. The EPI-pol coupling ismuch larger than the one obtained in the LDA band structure calculations. It contributes significantly to the intra-band s-wave pairing and an appreciable positive As-isotope effect in the superconducting critical temperature is expected. In the Fe-breathing mode the linear (in the Fe-displacements) EPI-pol coupling vanishes, while the non-linear (quadratic) one is very strong. The part of the EPI-pol coupling, which is due to the "potential" energy (the Hubbard U) changes, is responsible for the giant magneto-elastic effects in MFe_{2}As_{2}, M=Ca, Sr, Ba since it gives much larger contribution to the magnetic pressure than the band structure effects do. This mechanism is contrary to the LDA prediction where the magneto-elastic effects are due to the "kinetic" energy effects, i.e. the changes in the density of states by the magneto-elastic effects. The proposed $EPI-pol is expected to be operative (and strong) in other Fe-based superconductors with electronically polarizable ions such as Se, Te, S etc., and in high-temperature superconductors due to the polarizability of the O-ions.Comment: 6 pages, 2 figures; new References are added, text improved, typos correcte

    Emerging symmetric strain response and weakening nematic fluctuations in strongly hole- doped iron-based superconductors

    Get PDF
    Electronic nematicity is often found in unconventional superconductors, suggesting its rele- vance for electronic pairing. In the strongly hole-doped iron-based superconductors, the symmetry channel and strength of the nematic fluctuations, as well as the possible presence of long-range nematic order, remain controversial. Here, we address these questions using transport measurements under elastic strain. By decomposing the strain response into the appropriate symmetry channels, we demonstrate the emergence of a giant in-plane sym- metric contribution, associated with the growth of both strong electronic correlations and the sensitivity of these correlations to strain. We find weakened remnants of the nematic fluc- tuations that are present at optimal doping, but no change in the symmetry channel of nematic fluctuations with hole doping. Furthermore, we find no indication of a nematic- ordered state in the AFe2As2 (A =K, Rb, Cs) superconductors. These results revise the current understanding of nematicity in hole-doped iron-based superconductors

    Emergence of the nematic electronic state in FeSe

    Get PDF
    We present a comprehensive study of the evolution of the nematic electronic structure of FeSe using high resolution angle-resolved photoemission spectroscopy (ARPES), quantum oscillations in the normal state and elastoresistance measurements. Our high resolution ARPES allows us to track the Fermi surface deformation from four-fold to two-fold symmetry across the structural transition at ~87 K which is stabilized as a result of the dramatic splitting of bands associated with dxz and dyz character. The low temperature Fermi surface is that a compensated metal consisting of one hole and two electron bands and is fully determined by combining the knowledge from ARPES and quantum oscillations. A manifestation of the nematic state is the significant increase in the nematic susceptibility as approaching the structural transition that we detect from our elastoresistance measurements on FeSe. The dramatic changes in electronic structure cannot be explained by the small lattice effects and, in the absence of magnetic fluctuations above the structural transition, points clearly towards an electronically driven transition in FeSe stabilized by orbital-charge ordering.Comment: Latex, 8 pages, 4 figure

    The monoclinic crystal structure of α\alpha-RuCl3_3 and the zigzag antiferromagnetic ground state

    Full text link
    The layered honeycomb magnet alpha-RuCl3 has been proposed as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled jeff=1/2 Ru4+ magnetic moments. Here we report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, in contrast with the currently-assumed trigonal 3-layer stacking periodicity. We report electronic band structure calculations for the monoclinic structure, which find support for the applicability of the jeff=1/2 picture once spin orbit coupling and electron correlations are included. We propose that differences in the magnitude of anisotropic exchange along symmetry inequivalent bonds in the monoclinic cell could provide a natural mechanism to explain the spin gap observed in powder inelastic neutron scattering, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as neutron powder diffraction show a single magnetic transition at TN ~ 13K. The analysis of the neutron data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60T show a single transition around 8T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.Comment: 13 pages, 9 figures, published in Physical Review

    Quenched nematic criticality separating two superconducting domes in an iron-based superconductor under pressure

    Full text link
    The nematic electronic state and its associated nematic critical fluctuations have emerged as potential candidates for superconducting pairing in various unconventional superconductors. However, in most materials their coexistence with other magnetically-ordered phases poses significant challenges in establishing their importance. Here, by combining chemical and hydrostatic physical pressure in FeSe0.89_{0.89}S0.11_{0.11}, we provide a unique access to a clean nematic quantum phase transition in the absence of a long-range magnetic order. We find that in the proximity of the nematic phase transition, there is an unusual non-Fermi liquid behavior in resistivity at high temperatures that evolves into a Fermi liquid behaviour at the lowest temperatures. From quantum oscillations in high magnetic fields, we trace the evolution of the Fermi surface and electronic correlations as a function of applied pressure. We detect experimentally a Lifshitz transition that separates two distinct superconducting regions: one emerging from the nematic electronic phase with a small Fermi surface and strong electronic correlations and the other one with a large Fermi surface and weak correlations that promotes nesting and stabilization of a magnetically-ordered phase at high pressures. The lack of mass divergence suggests that the nematic critical fluctuations are quenched by the strong coupling to the lattice. This establishes that superconductivity is not enhanced at the nematic quantum phase transition in the absence of magnetic order.Comment: 4 figures, 9 page
    • …
    corecore