870 research outputs found

    The adjoint problem in the presence of a deformed surface: the example of the Rosensweig instability on magnetic fluids

    Full text link
    The Rosensweig instability is the phenomenon that above a certain threshold of a vertical magnetic field peaks appear on the free surface of a horizontal layer of magnetic fluid. In contrast to almost all classical hydrodynamical systems, the nonlinearities of the Rosensweig instability are entirely triggered by the properties of a deformed and a priori unknown surface. The resulting problems in defining an adjoint operator for such nonlinearities are illustrated. The implications concerning amplitude equations for pattern forming systems with a deformed surface are discussed.Comment: 11 pages, 1 figur

    On the Theory of Superfluidity in Two Dimensions

    Full text link
    The superfluid phase transition of the general vortex gas, in which the circulations may be any non-zero integer, is studied. When the net circulation of the system is not zero the absence of a superfluid phase is shown. When the net circulation of the vortices vanishes, the presence of off-diagonal long range order is demonstrated and the existence of an order parameter is proposed. The transition temperature for the general vortex gas is shown to be the Kosterlitz---Thouless temperature. An upper bound for the average vortex number density is established for the general vortex gas and an exact expression is derived for the Kosterlitz---Thouless ensemble.Comment: 22 pages, one figure, written in plain TeX, published in J. Phys. A24 (1991) 502

    Bosonization method for second super quantization

    Full text link
    A bosonic-fermionic correspondence allows an analytic definition of functional super derivative, in particular, and a bosonic functional calculus, in general, on Bargmann- Gelfand triples for the second super quantization. A Feynman integral for the super transformation matrix elements in terms of bosonic anti-normal Berezin symbols is rigorously constructed.Comment: In memoriam of F. A. Berezin, accepted in Journal of Nonlinear Mathematical Physics, 15 page

    Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images

    Full text link
    We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Our software---CHUNKYEuler---is available as open source on Bitbucket. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams

    On the Meaning of the Principle of General Covariance

    Full text link
    We present a definite formulation of the Principle of General Covariance (GCP) as a Principle of General Relativity with physical content and thus susceptible of verification or contradiction. To that end it is useful to introduce a kind of coordinates, that we call quasi-Minkowskian coordinates (QMC), as an empirical extension of the Minkowskian coordinates employed by the inertial observers in flat space-time to general observers in the curved situations in presence of gravitation. The QMC are operationally defined by some of the operational protocols through which the inertial observers determine their Minkowskian coordinates and may be mathematically characterized in a neighbourhood of the world-line of the corresponding observer. It is taken care of the fact that the set of all the operational protocols which are equivalent to measure a quantity in flat space-time split into inequivalent subsets of operational prescriptions under the presence of a gravitational field or when the observer is not inertial. We deal with the Hole Argument by resorting to de idea of the QMC and show how it is the metric field that supplies the physical meaning of coordinates and individuates point-events in regions of space-time where no other fields exist. Because of that the GCP has also value as a guiding principle supporting Einstein's appreciation of its heuristic worth in his reply to Kretschmann in 1918

    Smooth adiabatic evolutions with leaky power tails

    Get PDF
    Adiabatic evolutions with a gap condition have, under a range of circumstances, exponentially small tails that describe the leaking out of the spectral subspace. Adiabatic evolutions without a gap condition do not seem to have this feature in general. This is a known fact for eigenvalue crossing. We show that this is also the case for eigenvalues at the threshold of the continuous spectrum by considering the Friedrichs model.Comment: Final form, to appear in J. Phys. A; 11 pages, no figure

    One-Dimensional Discrete Stark Hamiltonian and Resonance Scattering by Impurities

    Get PDF
    A one-dimensional discrete Stark Hamiltonian with a continuous electric field is constructed by extension theory methods. In absence of the impurities the model is proved to be exactly solvable, the spectrum is shown to be simple, continuous, filling the real axis; the eigenfunctions, the resolvent and the spectral measure are constructed explicitly. For this (unperturbed) system the resonance spectrum is shown to be empty. The model considering impurity in a single node is also constructed using the operator extension theory methods. The spectral analysis is performed and the dispersion equation for the resolvent singularities is obtained. The resonance spectrum is shown to contain infinite discrete set of resonances. One-to-one correspondence of the constructed Hamiltonian to some Lee-Friedrichs model is established.Comment: 20 pages, Latex, no figure

    Korn's second inequality and geometric rigidity with mixed growth conditions

    Full text link
    Geometric rigidity states that a gradient field which is LpL^p-close to the set of proper rotations is necessarily LpL^p-close to a fixed rotation, and is one key estimate in nonlinear elasticity. In several applications, as for example in the theory of plasticity, energy densities with mixed growth appear. We show here that geometric rigidity holds also in Lp+LqL^p+L^q and in Lp,qL^{p,q} interpolation spaces. As a first step we prove the corresponding linear inequality, which generalizes Korn's inequality to these spaces

    Three-periodic nets and tilings: natural tilings for nets

    Get PDF
    Rules for determining a unique natural tiling that carries a given three-periodic net as its 1-skeleton are presented and justified. A computer implementation of the rules and their application to tilings for zeolite nets and for the nets of the RCSR database are described

    Uniqueness in MHD in divergence form: right nullvectors and well-posedness

    Full text link
    Magnetohydrodynamics in divergence form describes a hyperbolic system of covariant and constraint-free equations. It comprises a linear combination of an algebraic constraint and Faraday's equations. Here, we study the problem of well-posedness, and identify a preferred linear combination in this divergence formulation. The limit of weak magnetic fields shows the slow magnetosonic and Alfven waves to bifurcate from the contact discontinuity (entropy waves), while the fast magnetosonic wave is a regular perturbation of the hydrodynamical sound speed. These results are further reported as a starting point for characteristic based shock capturing schemes for simulations with ultra-relativistic shocks in magnetized relativistic fluids.Comment: To appear in J Math Phy
    corecore