7,099 research outputs found

    Absence of magnetic order for the spin-half Heisenberg antiferromagnet on the star lattice

    Full text link
    We study the ground-state properties of the spin-half Heisenberg antiferromagnet on the two-dimensional star lattice by spin-wave theory, exact diagonalization and a variational mean-field approach. We find evidence that the star lattice is (besides the \kagome lattice) a second candidate among the 11 uniform Archimedean lattices where quantum fluctuations in combination with frustration lead to a quantum paramagnetic ground state. Although the classical ground state of the Heisenberg antiferromagnet on the star exhibits a huge non-trivial degeneracy like on the \kagome lattice, its quantum ground state is most likely dimerized with a gap to all excitations. Finally, we find several candidates for plateaux in the magnetization curve as well as a macroscopic magnetization jump to saturation due to independent localized magnon states.Comment: new extended version (6 pages, 6 figures) as published in Physical Review

    Recombination dynamics in bacterial photosynthetic reaction centers

    Get PDF
    The time dependence of magnetic field effects on light absorption by triplet-state and radical ions in quinone-depleted reaction centers of Rhodopseudomonas sphaeroides strain R-26 has been investigated. Measurements on the time scale of the hyperfine interaction in the radical pair [(BChl)2+. ...BPh-.)] provided kinetic data characterizing the recombination process. The results have been interpreted in terms of a recently proposed model that assumes an intermediate electron acceptor (close site) between the bacteriochlorophyll "special pair" (BChl)2 and the bacteriopheophytin BPh (distant site). Recombination is assumed to proceed through this intermediate acceptor. The experiments led to effective recombination rates for the singlet and triplet channel: k(Seff) = 3.9 . 107 s-1 and k(Teff) = 7.4 . 10(8) s-1. These correspond to recombination rates ks = 1 . 10(1) s-1 and kT = 7.1 . 10(11) s-1 in the close configuration. The upper bound of the effective spin dephasing rate k2eff approximately equal to 1 . 10(9) s-1 is identical with the rate of the electron hopping between the distant site of zero spin exchange interaction and the close site of large interaction. Interpretation of data for the case of direct recombination yields the recombination rates, spin dephasing rate, and exchange interaction in a straightforward way

    Weakly interacting Bose gas in the one-dimensional limit

    Full text link
    We prepare a chemically and thermally one-dimensional (1d) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperature. We reach temperatures down to kT0.5ωkT\approx 0.5\hbar\omega_\perp (transverse oscillator eigenfrequency ω\omega_\perp) when collisional thermalization slows down as expected in 1d. At the lowest temperatures the transverse momentum distribution exhibits a residual dependence on the line density n1dn_{1d}, characteristic for 1d systems. For very low densities the approach to the transverse single particle ground state is linear in n1dn_{1d}.Comment: to appear in Phys. Rev. Let

    Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target

    Get PDF
    The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is studied for a pulse length range from 500 fs to 4.5 ps and a fluence range spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing a high-numerical-aperture optical microscope, while the ion yield and energy distributions are obtained from a set of Faraday cups set up under various angles. We found a slight increase of the ion yield for an increasing pulse length, while the ablation depth is slightly decreasing. The ablation volume remained constant as a function of pulse length. The ablation depth follows a two-region logarithmic dependence on the fluence, in agreement with the available literature and theory. In the examined fluence range, the ion yield angular distribution is sharply peaked along the target normal at low fluences but rapidly broadens with increasing fluence. The total ionization fraction increases monotonically with fluence to a 5-6% maximum, which is substantially lower than the typical ionization fractions obtained with nanosecond-pulse ablation. The angular distribution of the ions does not depend on the laser pulse length within the measurement uncertainty. These results are of particular interest for the possible utilization of fs-ps laser systems in plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure

    Hydrodynamic coupling and rotational mobilities near planar elastic membranes

    Get PDF
    We study theoretically and numerically the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance towards shear and bending. Using a combination of the multipole expansion and Faxen's theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities, and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied frequencies.Comment: 14 pages, 7 figures. Revised manuscript resubmitted to J. Chem. Phy

    Flavour-Conserving CP Phases in Supersymmetry and Implications for Exclusive B Decays

    Get PDF
    We study rare exclusive B decays based on the quark-level transition b->s(d)l^+l^-, where l=e or mu, in the context of supersymmetric theories with minimal flavour violation. We present analytic expressions for various mixing matrices in the presence of new CP-violating phases, and examine their impact on observables involving B and \bar{B} decays. An estimate is obtained for CP-violating asymmetries in B->K^(*)l^+l^- and B->rho(pi)l^+l^- decays for the dilepton invariant mass region 1.2 GeV < M_{l^+l^-}< M_{J/psi}. As a typical result, we find a CP-violating partial width asymmetry of about -6% (-5%) in the case of B->pi (B->rho) in effective supersymmetry with phases of O(1), taking into account the measurement of the inclusive b->s gamma branching fraction. On the other hand, CP asymmetries of less than 1% are predicted in the case of B->K^(*). We argue that it is not sufficient to have additional CP phases of O(1) to observe large CP-violating effects in exclusive b->s(d)l^+l^- decays.Comment: 34 pages, REVTeX, 6 figures, final version to appear in Phys. Rev. D, with some minor addition

    Quantum criticality of semi-Dirac fermions in 2 + 1 dimensions

    Get PDF
    Two-dimensional semi-Dirac fermions are quasiparticles that disperse linearly in one direction and quadratically in the other. We investigate instabilities of semi-Dirac fermions toward charge and spin density wave and superconducting orders, driven by short-range interactions. We analyze the critical behavior of the Yukawa theories for the different order parameters using Wilson momentum shell renormalization group. We generalize to a large number Nf of fermion flavors to achieve analytic control in 2+1 dimensions and calculate critical exponents at one-loop order, systematically including 1/Nf corrections. The latter depend on the specific form of the bosonic infrared propagator in 2+1 dimensions, which needs to be included to regularize divergencies. The 1/Nf corrections are surprisingly small, suggesting that the expansion is well controlled in the physical dimension. The order parameter correlations inherit the electronic anisotropy of the semi-Dirac fermions, leading to correlation lengths that diverge along the spatial directions with distinct exponents, even at the mean-field level. We conjecture that the proximity to the critical point may stabilize novel modulated order phases

    The exclusive \bar{B} --> \pi e^+ e^- and \bar{B} --> \rho e^+ e^- decays in the two Higgs doublet model with flavor changing neutral currents

    Full text link
    We calculate the leading logarithmic QCD corrections to the matrix element of the decay b --> d e^+ e^- in the two Higgs doublet model with tree level flavor changing currents (model III). We continue studying the differential branching ratio and the CP violating asymmetry for the exclusive decays B --> \pi e^+ e^- and B --> \rho e^+ e^- and analysing the dependencies of these quantities on the selected model III parameters, \xi^{U,D}, including the leading logarithmic QCD corrections. Further, we present the forward-backward asymmetry of dileptons for the decay B --> \rho e^+ e^- and discuss the dependencies to the model III parameters. We observe that there is a possibility to enhance the branching ratios and suppress the CP violating effects for both decays in the framework of the model III. Therefore, the measurements of these quantities will be an efficient tool to search the new physics beyond the SM.Comment: 27 pages, 14 Figure
    corecore