21,313 research outputs found

    A polynomial eigenvalue approach for multiplex networks

    Get PDF
    We explore the block nature of the matrix representation of multiplex networks, introducing a new formalism to deal with its spectral properties as a function of the inter-layer coupling parameter. This approach allows us to derive interesting results based on an interpretation of the traditional eigenvalue problem. More specifically, we reduce the dimensionality of our matrices but increase the power of the characteristic polynomial, i.e, a polynomial eigenvalue problem. Such an approach may sound counterintuitive at first glance, but it allows us to relate the quadratic problem for a 2-Layer multiplex system with the spectra of the aggregated network and to derive bounds for the spectra, among many other interesting analytical insights. Furthermore, it also permits to directly obtain analytical and numerical insights on the eigenvalue behavior as a function of the coupling between layers. Our study includes the supra-adjacency, supra-Laplacian, and the probability transition matrices, which enable us to put our results under the perspective of structural phases in multiplex networks. We believe that this formalism and the results reported will make it possible to derive new results for multiplex networks in the future.Comment: 15 pages including figures. Submitted for publicatio

    On degree-degree correlations in multilayer networks

    Get PDF
    We propose a generalization of the concept of assortativity based on the tensorial representation of multilayer networks, covering the definitions given in terms of Pearson and Spearman coefficients. Our approach can also be applied to weighted networks and provides information about correlations considering pairs of layers. By analyzing the multilayer representation of the airport transportation network, we show that contrasting results are obtained when the layers are analyzed independently or as an interconnected system. Finally, we study the impact of the level of assortativity and heterogeneity between layers on the spreading of diseases. Our results highlight the need of studying degree-degree correlations on multilayer systems, instead of on aggregated networks.Comment: 8 pages, 3 figure

    Chaotic oscillations in a nearly inviscid, axisymmetric capillary bridge at 2:1 parametric resonance

    Get PDF
    We consider the 2:1 internal resonances (such that Ω1>0 and Ω2 ≃ 2Ω1 are natural frequencies) that appear in a nearly inviscid, axisymmetric capillary bridge when the slenderness Λ is such that 0<Λ<π (to avoid the Rayleigh instability) and only the first eight capillary modes are considered. A normal form is derived that gives the slow evolution (in the viscous time scale) of the complex amplitudes of the eigenmodes associated with Ω1 and Ω2, and consists of two complex ODEs that are balances of terms accounting for inertia, damping, detuning from resonance, quadratic nonlinearity, and forcing. In order to obtain quantitatively good results, a two-term approximation is used for the damping rate. The coefficients of quadratic terms are seen to be nonzero if and only if the eigenmode associated with Ω2 is even. In that case the quadratic normal form possesses steady states (which correspond to mono- or bichromatic oscillations of the liquid bridge) and more complex periodic or chaotic attractors (corresponding to periodically or chaotically modulated oscillations). For illustration, several bifurcation diagrams are analyzed in some detail for an internal resonance that appears at Λ ≃ 2.23 and involves the fifth and eighth eigenmodes. If, instead, the eigenmode associated with Ω2 is odd, and only one of the eigenmodes associated with Ω1 and Ω2 is directly excited, then quadratic terms are absent in the normal form and the associated dynamics is seen to be fairly simple

    Layer degradation triggers an abrupt structural transition in multiplex networks

    Get PDF
    Network robustness is a central point in network science, both from a theoretical and a practical point of view. In this paper, we show that layer degradation, understood as the continuous or discrete loss of links' weight, triggers a structural transition revealed by an abrupt change in the algebraic connectivity of the graph. Unlike traditional single layer networks, multiplex networks exist in two phases, one in which the system is protected from link failures in some of its layers and one in which all the system senses the failure happening in one single layer. We also give the exact critical value of the weight of the intra-layer links at which the transition occurs for continuous layer degradation and its relation to the value of the coupling between layers. This relation allows us to reveal the connection between the transition observed under layer degradation and the one observed under the variation of the coupling between layers.Comment: 8 pages, and 8 figures in Revtex style. Submitted for publicatio

    Graphs of Transportation Polytopes

    Get PDF
    This paper discusses properties of the graphs of 2-way and 3-way transportation polytopes, in particular, their possible numbers of vertices and their diameters. Our main results include a quadratic bound on the diameter of axial 3-way transportation polytopes and a catalogue of non-degenerate transportation polytopes of small sizes. The catalogue disproves five conjectures about these polyhedra stated in the monograph by Yemelichev et al. (1984). It also allowed us to discover some new results. For example, we prove that the number of vertices of an m×nm\times n transportation polytope is a multiple of the greatest common divisor of mm and nn.Comment: 29 pages, 7 figures. Final version. Improvements to the exposition of several lemmas and the upper bound in Theorem 1.1 is improved by a factor of tw
    • …
    corecore