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We propose a generalization of the concept of assortativity based on the tensorial representation
of multilayer networks, covering the definitions given in terms of Pearson and Spearman coefficients.
Our approach can also be applied to weighted networks and provides information about correlations
considering pairs of layers. By analyzing the multilayer representation of the airport transportation
network, we show that contrasting results are obtained when the layers are analyzed independently
or as an interconnected system. Finally, we study the impact of the level of assortativity and
heterogeneity between layers on the spreading of diseases. Our results highlight the need of studying
degree-degree correlations on multilayer systems, instead of on aggregated networks.
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I. INTRODUCTION

The use of network science to study the structure and
dynamics of complex systems has proved to be a success-
ful approach to understand the organization and function
of several natural and artificial systems [1–4]. The tradi-
tional framework used up to a few years ago represents
the structure of complex systems as single-layer (also re-
ferred to as monoplex) networks, in which only one type
of connection is accounted for. However, this approach is
limited because most natural and artificial systems such
as the brain, our society or modern transportation net-
works [5, 6], are made up by different constituents and/or
different types of interaction. Indeed, their structure is
organized in layers. For instance, in social networks in-
dividuals can be connected according to different social
ties, such as friendship or family relationship (e.g. [7]). In
transportation networks, routes of a single airline can be
represented as a network, whose vertices (destinations)
can be mapped into networks of several companies [8].
Gene co-expression networks consist of layers, each one
representing a different signaling pathway or expression
channel [9]. Therefore, mapping out the structure of
these and similar systems as a monoplex network could
lead to miss relevant information that could not be cap-
tured if the single layers are analyzed separately nor if all
layers are collapsed altogether in an aggregated graph.

∗Electronic address: francisco@icmc.usp.br

Additionally, note that in most of these interconnected
systems, the information travels not only among vertices
of the same layer, but also between pairs of layers.

Recent advances in modeling the aforementioned sys-
tems include new mathematical formulations [10], the
generalization of different metrics [6, 10–12] and the
impact of the multilayer structure on several dynamical
processes [11, 13–16]. Although clustering [12], central-
ity [11, 17] and spectral properties [11, 13, 18] of multi-
layer networks have been addressed, a measure to quan-
tify degree-degree correlations in multilayers is still lack-
ing. Degree-degree correlations is a fundamental prop-
erty of single-layer networks, impacting the spreading
of diseases, synchronization phenomena and systems’ re-
silience [3, 19]. Additionally, it has been reported that
different correlations arise in different kinds of networks:
social networks are in general assortative, meaning that
highly connected nodes tend to link with each other,
whereas technological and biological systems have disas-
sortative structures, in which high degree nodes are likely
attached to low degree nodes [20].

For networks made up of more than one layer, only
recently, Nicosia and Latora [21] considered the correla-
tion between the degrees in two different layers. How-
ever, their methodology is only for node-aligned multi-
plex networks, which are special cases of multilayer net-
works (see [5]). In fact, multiplex networks are made up
of N nodes that can be in one or more interacting layers.
The links in each layer represent a given mode of inter-
action between the set of nodes belonging to that layer,
whereas links connecting different layers stand for the
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different modes of interaction between objects involved
in [5].

In this paper we study degree-degree correlations in
multilayer systems and propose a way to generalize pre-
vious assortativity metrics by considering the tensorial
formulation introduced in [10]. Our approach also covers
a weighted version of assortativity [22] and the case in
which the assortativity is given by the Spearman corre-
lation coefficient, generalizing the definition in [23]. The
study of a real dataset corresponding to the airport trans-
portation network shows a contrasting behavior between
the analyses of each layers independently and altogether,
which reinforces the need for such a generalization of the
assortativity measure. Finally, we study the influence of
degree-degree correlations on epidemic spreading in mul-
tilayer networks. We verify that the impact of the dis-
ease depends on degree-degree correlations and also on
the level of heterogeneity between the layers.

II. ASSORTATIVITY IN MULTILAYER
NETWORKS.

Tensors are suitable for representation of multilayer
networks. As showed in [10], tensors allow us to consider

a branch of new relationships between nodes and layers,
by encoding a multilayer network as a forth order mixed
tensor, Mαδ̃

βγ̃ , i.e. 2-covariant and 2-contravariant basis,
in the Euclidian space. Such representation is convenient
for many operations, as discussed in [10]. We use the
definition of the interlayer adjacency tensor Cαβ (h̃r̃) that
is a second order tensor which has the information of
the relationships between nodes in layers h̃ and r̃. Note
that Cαβ (r̃r̃) is the adjacency matrix for the layer r̃ and
belongs to RN×N space. Then, the multilayer adjacency
tensor is expressed as the summation over all layers L of
the tensorial product of the adjacency tensors, Cαβ (h̃r̃),
and the canonical Euclidean basis. Mathematically,

Mαγ̃

βδ̃
=

L∑
h̃,r̃

Cαβ (h̃r̃)E δ̃γ̃(h̃r̃). (1)

which belongs to RN×N×L×L space.

Following Einstein’s summation convention, the assor-
tativity coefficient can be written as

ρ(Wα
β ) =

M−1Wα
βQ

βQα −
[
1/2M−1

(
Wα
βQαu

β +Wα
βQ

βuα

)]2
M−1

(
Wα
β (Qα)2uβ +Wα

β (Qβ)2uα

)
−
[
1/2M−1

(
Wα
βQαu

β +Wα
βQ

βuα

)]2 (2)

where u is the 1-tensor, which is a tensor of rank 1 and
has all elements equal to 1, Wα

β is a second order tensor
that summarizes the information that is being extracted
andM =Wα

βU
β
α is a normalization constant.

Let us explain in more details all terms appearing in
the expression of ρ(Wα

β ). First, we define

Qα =Wα
β u

β , (3)

which is a 1-contravariant tensor and

Qβ =Wα
β uα (4)

which is a 1-covariant tensor. Moreover, the indices
are related to the direction of the relationships between
nodes. Such a choice ensures a more general expression,
capturing degree correlations on non-symmetric tensors
and, consequently, in directed and weighted networks.

Due to the multiplex nature of such systems we obtain
different types of correlations, which can be uncovered
by operating on the adjacency tensor. First of all, it is
possible to extract a single layer by the operation called
single layer extraction [10]. In this case, the adjacency

tensor is defined as

Wα
β = Cαβ (r̃r̃) = Mαγ̃

βδ̃
E δ̃γ̃(r̃r̃), (5)

which is a simple projection on the canonical basis,
E δ̃γ̃(r̃r̃). It is noteworthy that the results obtained from
this projection are the same as those obtained by con-
sidering the layer r̃ as a monoplex network and applying
the traditional formulation of assortativity [20]. On the
other hand, to consider all layers altogether, we can use
the projected network, which is a weighted single-layer
network. Formally it is given as

Wα
β = Pαβ = Mαδ̃

βγ̃U
γ̃

δ̃
. (6)

Note that the projection presents self-edges and, as ar-
gued in [10], it is different from a weighted monoplex
network, since self-edges code for inter-layer couplings
between different replica of the same object. Thus they
have a different meaning with respect to other edges. A
version of the projection without self-edges is called over-
lay network and is given as the contraction over the lay-
ers [10], i.e.,

Wα
β = Oαβ = Mαγ̃

βγ̃ . (7)
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Observe that the overlay network does not consider the
contribution of the interlayer connections, whereas the
projection does. As we will see later, comparisons be-
tween the assortativity of those two different representa-
tions of the system reveal the key role of such inter-links.

In both cases, i.e., for the overlay and the projected
networks, we extract degree-degree correlations. Nodes
with similar degrees connected in the same or different
layers contribute positively to the assortativity coeffi-
cient. On the other hand, the connections between hubs
and low degree nodes in the same or different layers de-
crease the assortativity. Self-edges always increase the
assortativity, which yields different values of assortativ-
ity for the overlay and the projected networks. This gives
information on the nature of the coupling between differ-
ent replicas of the same object among different layers.

In some applications, it is interesting to calculate a
pair-wise correlation between a set of nodes, for instance,
between couple of layers. Thus, we propose a new oper-
ation, that we call selection, which is a projection over a
selected set of layers:

Wα
β (L) = Sαβ (L) = Mαδ̃

βγ̃Ωγ̃
δ̃
(L), (8)

where Ωγ̃
δ̃
is a tensor used to select the set of layers we

consider in the projection (L). The components of the
tensor are equal to unity when the layers δ̃ and γ̃ are se-
lected, and zero otherwise. Note that by selecting all lay-
ers together we recover the 1-tensor U γ̃

δ̃
and consequently

Eq. 6. Another special case is δ̃ = γ̃, which yields Eq. 5,
or the layer extraction. The tensor can also be general-
ized to weight different layers. In this case, each element
of Ωγ̃

δ̃
contains the weight of the relationship between two

layers δ̃ and γ̃. Such projection is similar to the covari-
ance matrix in statistics, which generalizes the concept of
variance. The covariance between two variables is quan-
tified in each entry of the matrix and the main diagonal
has the variance of each variable. Thus, we can define
a matrix that generalizes the assortativity in a similar
manner as the covariance matrix generalizes the concept
of variance, i.e.

Sγ̃
δ̃

= ρ
(
Sαβ (L = {γ̃, δ̃})

)
, (9)

which belongs to a RL×L space. We call S the P-
assortativity matrix.

Also in this case, a similar operation for the overlay
network can be considered, yielding

Wα
β (L) = Zαβ (L) =

L∑
h̃∈L

Cαβ (h̃h̃), (10)

which can also be generalized in a similar way as Eqs. 8
and 9, resulting in the matrix

Zγ̃
δ̃

= ρ
(
Zαβ (L = {γ̃, δ̃})

)
. (11)

We call Z the O-assortativity matrix. A similar inter-
layer correlation was also proposed in [21], where the au-
thors suggested measuring the degree correlation between
two different layers of the replica of the same object (or
node). Furthermore, they proposed three different ways:
the Pearson correlation coefficient, Spearman rank cor-
relation and the Kendall’s τ index. However, it is worth
pointing out that such an approach does not consider
the intra-layer relationship because it is only for node-
aligned multiplex networks [5]. Here, we generalize such
a measure in terms of tensorial notation.

Up to now we have considered nodes, but if we ex-
tract the network of layers [10], the correlation between
different layers can also be evaluated. We use

W γ̃

δ̃
= Ψγ̃

δ̃
= Mαγ̃

βδ̃
Uβα (12)

where Uβα is the second-order tensor whose components
are all equal to one. It is important to stress that the
components of this adjacency tensor are not binary, but
weighted by the number of edges inter each layer. More-
over, also in this case, the resulting tensor presents self-
edges that encode the information about the density of
connections inside a single layer. Finally, we can con-
sider only interlayer relationships over two different lay-
ers. Such information is extracted by projecting the ad-
jacency tensor on the canonical base as

Wα
β = Cαβ (r̃h̃) = Mαδ̃

βγ̃E
γ̃

δ̃
(r̃h̃). (13)

Note that this is only applicable to multilayer networks
and does not make sense in multiplex networks, since in
the latter case the coupling is diagonal.

The assortativity coefficient can also be defined in
terms of the Spearman rank correlation [23], since the
traditional definition of this coefficient based on the Pear-
son correlation [20] can lead to incomplete results, as
discussed in [23]. The generalization of assortativity co-
efficient proposed here allows to consider the Spearman
rank correlation coefficient by changing Eqs. 3 and 4.
Specifically, instead of considering the values of Qα and
Qβ , one substitutes them by their respective ranks. Such
transformation is performed by using

Qα = rank(Wα
β u

β) (14)

and

Qβ = rank(Wα
β uα), (15)

where rank(Xi) is the rank of the tensor Xi.
We henceforth denote by ρP (Wα

β ) and ρS(Wα
β ) the

Pearson and Spearman correlation coefficients, respec-
tively. Furthermore, we adopt (SP )γ̃

δ̃
and (SS)γ̃

δ̃
for

the pair-wise correlation matrices using the Pearson and
Spearman correlation coefficients, respectively. The same
notation can be used for the matrices (ZP )γ̃

δ̃
and (ZS)γ̃

δ̃
.

Monoplex assortativity, i.e. assortativity in single-layer
networks [20], is recovered by considering the adjacency
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matrix, Wα
β = Aαβ , and consequently Qα and Qβ are

analogous to in-degree and out-degree, respectively. Note
that Qα = Qβ for undirected networks. Moreover,M is
equal to twice the number of edges, recovering the equa-
tion introduced in [20], which also captures correlations
of weighted networks, as exposed in [22].

III. APPLICATION TO REAL DATA

We analyze the airport transportation network [24],
whose multilayer representation was studied in [8]. The
network comprises 450 airports and 37 companies, which
are mapped as nodes and layers, respectively. More
specifically, in each layer, the edges represent the di-
rected flights operated by a given company and nodes,
airports. Figure 1 shows a representation of 12 layers
of such multilayer network. The inter-layer connections
link the airports shared by pairs of different companies.
This approach gives us a multilayer network that is not
a node-aligned multiplex network, since the latter con-
siders a diagonal coupling between all nodes in all layers.
Note that the way proposed in [8] to create the aggre-
gated monoplex network is the union of all layers consid-
ering multiple edges as single ones. This is in contrast to
our approach, because we consider the projections and
overlay networks as weighted networks, thus retaining
the information of the number of different connections
between the same pair of airports.

Previous studies [8, 24] showed that the airport trans-
portation network presents the rich-club effect, which
refers to the tendency of highly central nodes to be con-
nected among themselves. This is also captured by the
assortativity as shown in Table I, where we verify that
the projected network has positive assortativity coeffi-
cients, agreeing with previous analyses. However note
that the projection has a positive value of the assorta-
tivity, whereas the overlay has a negative one. Thus,
the assortativity of the projection indicates that many
companies share hubs airport, not that hubs connect be-
tween them. This apparent contradiction results from
the fact that the rich-club effect is masked out in the
overlay setup by the large number of peripheral nodes
connecting to hubs.

The analysis of each layer separately shows a differ-
ent result, where most of the layers are disassortative.
The only exception is the Netjet layer, which presents a
positive coefficient for the rank correlation. Usually the
companies focus their activities in one city or country, for
example, Lufthansa in Germany or Air France in France,
and have flights to other airports where their activity is
lower. This leads to the disassortative behavior of each
layer. Additionally, the disassortative correlations found
in single layers is more pronounced than that of the over-
lay representation, which can be explained by noticing
that hubs of a company are peripheral (or secondary)
airports for other companies, but when the layers are
collapsed they are also hubs in the overlay network and

TABLE I: Structural properties of the airport transportation
multilayer networks.
Network N M 〈Qα〉 ρP (Wα

β ) ρS(Wα
β )

Network of Layers (Ψα
β ) 37 30398.0 821.568 0.377 0.286

Overlay (Oαβ ) 450 7176.0 15.947 -0.050 -0.025
Projected network (Pαβ ) 450 30398.0 67.551 0.795 0.560

are connected.
Figure 2 shows the pair-wise correlation between lay-

ers. Interestingly, the latter is disassortative, in contrast
to the results obtained for the projected network, but of
the same sign as those computed for the overlay repre-
sentation (see Table I). Furthermore, our construction of
the adjacency tensor leads to an assortative network of
layers, suggesting that bigger companies tend to share
similar airports. This analysis agrees with [8], where the
authors argued that the main airports are connected to
each other via directed flights. In addition, consider-
ing the Pearson correlations, the O-assortativity matrix
presents lower values if compared to the P-assortativity
matrix due to the intra-layer contributions, as discussed
before.

IV. EPIDEMIC SPREADING IN CORRELATED
MULTILAYER NETWORKS

We investigate the effects of degree-degree correla-
tions on epidemic spreading. To this end, we consider
a classical SIS (Susceptible-Infected-Susceptible) model,
in which nodes can be in one of two states, susceptible
or infected [26]. Susceptible individuals can be infected
if they are in contact with infected individuals, who have
already caught the disease and are actively spreading it.
Infected individuals get back to the susceptible state with
probability µ. Here, we adopt the discrete formulation
presented in [13], considering a fully reactive processes
(RP), and also perform Monte Carlo simulations of the
epidemic process.

As in [13], we consider intra and inter layer spreading.
Let’s λ be the probability of spreading through an intra-
layer contact and γ the spreading probability through
an inter-layer contact. We also assume the possibility of
re-infection, that is, an infected individual can be cured
and re-infected in the same time interval. Furthermore,
it is convenient to consider the ratio between intra-layer
and inter-layer spreading probabilities as a constant [13],
here we set η = γ

λ = 2. However we find similar results
considering other ratios.

To obtain the expression of the macro-state variable
in the tensorial notation, we redefine the supra-contact
matrix as

Rαγ̃
βδ̃

(λ, γ) = Mαη̃
βσ̃E

σ̃
η̃ (γ̃δ̃)δγ̃

δ̃
+
γ

λ
Mαη̃
βσ̃E

σ̃
η̃ (γ̃δ̃)(U γ̃

δ̃
− δγ̃

δ̃
),

(16)
where Eσ̃η̃ (γ̃δ̃) ∈ RL×L indicates the tensor in the canon-
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FIG. 1: Example of an airport transportation multilayer network. Each layer represents an airline, in which each node represents
an airport and the edges are flights between two airports. This visualization was generated using MuxViz [25].
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FIG. 2: Pair-wise assortativity coefficient using Spearman rank correlation, ρS(Sαβ ) in (a) and ρS(Zαβ ) in (b). Observe that the
main diagonal presents the same coefficient considering the layer extraction operation, ρS(Cαβ (r̃r̃)).

ical basis and δγ̃
δ̃
is the Kronecker delta, which is equal

to one if γ̃ = δ̃ and zero otherwise.
Denoting the probability of the node β, on layer δ̃,

becoming infected at time t as Xβδ̃(t), the discrete time
evolution equation for this probability is described as

Xβδ̃(t+ 1) = (1−Xβδ̃(t))(1− qβδ̃(t)) + (1− µ)Xβδ̃(t)

+ µ(1− qβδ̃(t))Xβδ̃(t), (17)

where the probability that a node will not be infected by
any of its neighbors at time t is given as

qβδ̃(t) =
∏
α

∏
γ̃

(
1− λRβδ̃αγ̃(λ, γ)Xαγ̃

)
. (18)

Observe that in Eq. 17, the indices βδ̃ are not dummy
and there is no summation on it. A more formal nota-
tion would be obtained substitutingXβδ̃ byXησ̃E

ησ̃(βδ̃).
The implicit summation has only one term different from
zero, which is Xβδ̃.

Finally, the macro-state variable is given as

φ =
1

LN
Xβδ̃U

βδ̃, (19)

where Uβδ̃ ∈ RN×L is the all one tensor. In other words
it is an average over all the individuals. Observe that
our equations are exactly the same presented in [13], but
here we consider the tensorial notation.

In addition to the analytical approach we also per-
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FIG. 3: Phase diagram for epidemic spreading on different levels of assortativity. (a) First layer with m ≈ 3 and 〈k〉 ≈ 17,
and second with m ≈ 2.8 and 〈k〉 ≈ 12. (b) First layer with m ≈ 3 and 〈k〉 ≈ 17, and second with m ≈ 4.5 and 〈k〉 ≈ 13.
All networks are composed by N = 104 nodes. We adopt γ

λ
= 2 and µ = 1. The continuous lines are the analytical solution

(Eq. 19), while the symbols are obtained from Monte Carlo simulations, averaging over 102 runs. The standard deviation is of
the size of the symbols.

form Monte Carlo simulations to evaluate the influence
of degree-degree correlations on epidemic spreading. The
simulations are performed in a synchronous manner, i.e.,
every node changes its state at the same time and the
events between t and t + 1 are assumed to occur at the
same time. In this way, at each time step, every spreader
is cured with probability µ. After that, every infected
individual contacts all its neighbors, thus representing a
fully reactive processes (RP). However, note that a cured
spreader can still propagate the disease, because its state
changes only at the end of the time step. This procedure
enables the occurrence of reinfections. After the contact,
the disease spreading can occur in two different ways:
(i) for inter-layers, where the spreading takes place with
probability λ, or (ii) for intra-layers, where the spreading
occurs with probability γ.

In order to quantify the effect of degree-degree correla-
tions on the spreading process, we generate two scale-free
networks, with degree distribution P (k) ≈ k−m, accord-
ing to the configuration model [27]. The first layer has
m ≈ 3 and 〈k〉 ≈ 17, whereas the other one we evaluate
in two different configurations: (i) m ≈ 4.5 and 〈k〉 ≈ 13
and (ii) m ≈ 2.8 and 〈k〉 ≈ 12. Both networks are com-
posed by N = 104 nodes.

On the other hand, to control the level of degree-degree
correlations in random networks, we consider a simulated
annealing algorithm [28]. This algorithm is based on
two functions, i.e., (i) the perturbation function, which
changes the system configuration, and (ii) the energy
function, which is minimized. In our case, the pertur-
bation function is a rewiring procedure that preserves
the degree distribution of the network, but changes the
large-scale degree-degree correlations. The energy func-

tion is defined as Et = c(ρt + 1), where ρt is the network
assortativity at time t and c is a constant related to the
level of degree-degree correlation, i.e., c = −1 if the goal
is to obtain an assortative network or c = 1 if the goal is
a disassortative network.

Given an initial network configuration, an initial tem-
perature, T and a cooling factor α, the algorithm can be
described by the following steps: (i) the energy function
is initialized as E0; (ii) while the number of iterations are
less than a threshold or the optimal solution is not found
(or good solution, given a tolerance) the following steps
are performed: (iii) a rewiring preserving the degree dis-
tribution is executed, according to our perturbation func-
tion; (iv) the new energy function, Et+1, is calculated; (v)
if Et − Et+1 < 0 or exp

(
−(Et−Et+1)

T

)
< U(0, 1) , where

U(0, 1) is a random number sampled from a uniform dis-
tribution in [0, 1], then the new solution is accepted; (vi)
the temperature is updated, T = αT ; and (vii) incre-
ment the iteration counter. Observe that a worse state
than the current one can be accepted with a probability
exp

(
−(Et−Et+1)

T

)
. This mechanism allows the system to

avoid local minima. Following this procedure, we can
generate random networks with a defined level of degree-
degree correlation.

Thus, using the simulated annealing algorithm above,
we tune the assortativity on the individual layers. We
can have three different configurations for each layer, i.e.,
(i) one assortative, (ii) one disassortative and (iii) one
non-assortative. Those individual layers are connected,
forming a multiplex network. In this case, we can have
three different configurations: (i) assortative: densely
connected nodes from one layer is connected to densely
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TABLE II: Structural properties of each layer of the airport
transportation multilayer networks.

Company N M 〈Qα〉 ρP (Cαβ ) ρS(Cαβ )
Lufthansa 106 488.0 4.604 -0.668 -0.473
Ryanair 128 1202.0 9.391 -0.321 -0.348
Easyjet 99 614.0 6.202 -0.428 -0.470
British Airways 65 132.0 2.031 -0.775 -0.754
Turkish Airlines 86 236.0 2.744 -0.697 -0.567
Air Berlin 75 368.0 4.907 -0.501 -0.434
Air France 59 138.0 2.339 -0.637 -0.661
Scandinavian Airlines 66 220.0 3.333 -0.681 -0.521
KLM 63 124.0 1.968 -1.000 -1.000
Alitalia 51 186.0 3.647 -0.572 -0.538
Swiss International Air Lines 48 120.0 2.500 -0.728 -0.618
Iberia 35 70.0 2.000 -0.900 -0.838
Norwegian Air Shuttle 52 174.0 3.346 -0.511 -0.523
Austrian Airlines 67 144.0 2.149 -0.823 -0.744
Flybe 43 198.0 4.605 -0.560 -0.489
Wizz Air 45 184.0 4.089 -0.350 -0.381
TAP Portugal 42 106.0 2.524 -0.779 -0.610
Brussels Airlines 44 86.0 1.955 -1.000 -1.000
Finnair 42 84.0 2.000 -0.915 -0.858
LOT Polish Airlines 44 110.0 2.500 -0.658 -0.598
Vueling Airlines 36 126.0 3.500 -0.438 -0.456
Air Nostrum 48 138.0 2.875 -0.571 -0.569
Air Lingus 45 116.0 2.578 -0.670 -0.625
Germanwings 44 134.0 3.045 -0.628 -0.482
Panagra Airways 45 116.0 2.578 -0.625 -0.593
Netjets 94 360.0 3.830 -0.106 0.107
Transavia Holland 40 114.0 2.850 -0.585 -0.535
Niki 36 74.0 2.056 -0.838 -0.784
SunExpress 38 134.0 3.526 -0.797 -0.542
Aegean Airlines 38 106.0 2.789 -0.583 -0.560
Czech Airlines 42 82.0 1.952 -1.000 -1.000
European Air Transport 53 146.0 2.755 -0.416 -0.423
Malev Hungarian Airlines 35 68.0 1.943 -1.000 -1.000
Air Baltic 45 90.0 2.000 -0.844 -0.812
Wideroe 45 180.0 4.000 -0.293 -0.311
TNT Airways 53 122.0 2.302 -0.415 -0.346
Olympic Air 37 86.0 2.324 -0.754 -0.662

connected nodes in the other layer, (ii) disassortative:
hubs in one layer are connected to low degree nodes in
the other layer, and (iii) random: nodes in different lay-
ers are randomly connected. In this way, our data set is
composed by 27 multiplex networks presenting different
levels of assortativity. We also consider η = γ

λ = 2 and
µ = 1. Similar results are found for different values of η.

Figure 3 shows the simulations of the SIS dynamics on
top of multiplex networks with different levels of assorta-
tivity. We can see a good agreement between the Monte
Carlo simulation and the theoretical macro-state variable
(see Eq. 19), although we assume that there is no corre-
lation among the state of each random variable. Each
network has different values of the epidemic threshold
and also exhibits different behaviors near the threshold.
Indeed, the epidemic threshold for assortative networks
is at a lower transmission probability. This happens be-
cause the disease has a faster initial growth rate and a
shorter duration in assortative networks than in disassor-
tative networks. Nevertheless, disassortative networks
show higher values of φ for larger values of γ/λ. This
result agrees with the analysis of single layer networks

in [29]. Notice that the same behavior is observed for
Figures 3(a) and 3(b), although in (a) the network is
more heterogeneous than in (b). In fact, for more het-
erogeneous networks, the influence of degree-degree cor-
relations is reduced.

V. CONCLUSIONS

In this paper we have generalized the metric used to
calculate assortativity of multilayer networks. Our ap-
proach consists of reducing the dimension of the adja-
cency tensor and applying the Pearson correlation coeffi-
cient on the extremes of each edge. We follow the tenso-
rial approach, which help us to have a compact, algorith-
mic and general formulation, covering various topological
representations and possibilities, such as overlay and pro-
jected networks, and also pair-wise measurements. The
calculation of the Spearman rank correlation is also pos-
sible from our formulation.

In the study of the airport transportation network, we
verified that the individual analysis of the overlay or the
projected networks can yield misleading conclusions. In-
deed, as shown in Table I the assortativity values for
the projected and overlay networks are different. The
overlay network shows a small disassortative behavior,
while the projected graph is highly assortative. This in-
dicates that the main contribution to the assortativity
of the projected network is given by self-edges, i.e., hub
airports that are present in many different layers. On
the other hand, individually, each layer is disassortative,
with a value much higher in module than the one ob-
tained for the overlay network. This is because compa-
nies tend to have one big hub from which connections
to many other airports are established, but, at the same
time, they tend to have direct flights to the hubs of other
companies. This interpretation of the data is also con-
firmed in Figure 2, in which we observe a high negative
value along the diagonal of the matrix, i.e., a strong disas-
sortative behavior of isolated layers. In addition, we can
see relative smaller negative values for the elements out of
the diagonal, i.e., a relative weaker disassortative behav-
ior, representing pair-wise correlations between different
layers, i.e. companies. Furthermore, the comparison of
the P-assortativity and the O-assortativity matrices also
emphasizes the importance of the two different analysis,
where the first is slightly higher due to the self-edges.
Finally, the network of layers shows an assortative be-
havior, suggesting again that the main airline companies
share similar airports.

Finally, we studied the effects of degree-degree correla-
tions on epidemic spreading. The results obtained from
Monte Carlo simulations and theoretical analysis using
a Markov Chain formulation in terms of tensors show
that the level of assortativity and heterogeneity between
layers influence the spreading process. More specifically,
we verified that assortative networks show a smaller epi-
demic threshold, and that the disease has a faster initial
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growth rate in these networks, but a shorter duration. On
the contrary, the fraction of infected individuals is larger
in disassortative networks. Finally, we have also shown
that degree-degree correlations have a larger impact on
the spreading dynamics when the coupled networks have
similar levels of heterogeneity.
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