256 research outputs found

    Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6

    Full text link
    Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of the applied pressure. At zero applied pressure, the easy axis is along the c-direction or perpendicular to the layer. Upon application of a hydrostatic pressure>1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c-axis to the ab-plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (>100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy

    Closed-loop Controlled Brillouin Optical Time-Domain Analysis

    Get PDF
    A closed-loop controlled BOTDA distributed optical fibre sensor is proposed for tracking fast temperature-strain evolution. The measurement time is reduced by two orders of magnitude with respect to classical BOTDA sensing, while keeping the same accuracy and measurement conditions

    Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors

    Get PDF
    The robustness of bipolar pulse coding against pump depletion issues in Brillouin distributed fiber sensors is theoretically and experimentally investigated. The presented analysis points out that the effectiveness of bipolar coding in Brillouin sensing can be highly affected by the power unbalance between -1's and +1's elements resulting from depletion and amplification of coded pump pulses. In order to increase robustness against those detrimental effects and to alleviate the probe power limitation imposed by pump depletion, a technique using a three-tone probe is proposed. Experimental results demonstrate that this method allows increasing the probe power by more than 12.5 dB when compared to the existing single-probe tone implementation. This huge power increment, together with the 13.5 dB signal-to-noise enhancement provided by 512-bit bipolar Golay codes, has led to low-uncertainty measurements (< 0.9 MHz) of the local Brillouin peak gain frequency over a real remoteness of 100 km, using a 200 km-long fiber-loop and 2 m spatial resolution. The method is evaluated with a record figure-of-merit of 380'000

    Late Holocene anti-phase change in the East Asian summer and winter monsoons

    Get PDF
    Changes in East Asian summer and winter monsoon intensity have played a pivotal role in the prosperity and decline of society in the past, and will be important for future climate scenarios. However, the phasing of changes in the intensity of East Asian summer and winter monsoons on millennial and centennial timescales during the Holocene is unclear, limiting our ability to understand the factors driving past and future changes in the monsoon system. Here, we present a high resolution (up to multidecadal) loess record for the last 3.3 ka from the southern Chinese Loess Plateau that clearly demonstrates the relationship between changes in the intensity of the East Asian summer and winter monsoons, particularly at multicentennial scales. At multimillennial scales, the East Asian summer monsoon shows a steady weakening, while the East Asian winter monsoon intensifies continuously. At multicentennial scales, a prominent similar to 700-800 yr cycle in the East Asian summer and winter monsoon intensity is observed, and here too the two monsoons are anti-phase. We conclude that multimillennial changes are driven by Northern Hemisphere summer insolation, while multicentennial changes can be correlated with solar activity and changing strength of the Atlantic meridional overturning circulation. (C) 2018 Elsevier Ltd. All rights reserved

    The community structure and microbial linkage of rumen protozoa and methanogens in response to the addition of tea seed saponins in the diet of beef cattle

    Get PDF
    © 2020 The Author(s). Background: This study investigated changes in rumen protozoal and methanogenic communities, along with the correlations among microbial taxa and methane (CH4) production of six Belmont Red Composite beef steers fed tea seed saponins (TSS). Animals were fed in three consecutive feeding periods, a high-grain basal diet for 14 d (BD period) then a period of progressive addition of TSS to the basal diet up to 30 g/d for 20 d (TSS period), followed by the basal diet for 13 d without TSS (BDP post-control period). Results: The study found that TSS supplementation decreased the amount of the protozoal genus Entodinium and increased Polyplastron and Eudiplodinium genera. During BDP period, the protozoa community of steers did not return to the protozoal profiles observed in BD period, with higher proportions of Metadinium and Eudiplodinium and lower Isotricha. The addition of TSS was found to change the structure of methanogen community at the sub-genus level by decreasing the abundance of methanogens in the SGMT clade and increasing the abundance of methanogens in the RO clade. The correlation analysis indicated that the abundance of SGMT clade methanogens were positively correlated with Isotricha, and Isotricha genus and SGMT clade methanogens were positively correlated with CH4 production. While RO clade were positively correlated with the proportion of Metadinium genus, which was negatively correlated with CH4 emission. Conclusions: These results suggest that different genera of rumen protozoa ciliates appear to be selectively inhibited by TSS, and the change in methanogen community at the subgenus level may be due to the mutualistic relationships between methanogens and rumen ciliates

    Impact of Fitting and Digital Filtering on Signal-to-Noise Ratio and Brillouin Frequency Shift Uncertainty of BOTDA Measurements

    Get PDF
    The intricate relationships linking signal-to-noise ratio and Brillouin frequency shift uncertainty after post-processing of Brillouin optical time-domain analysis measurements are investigated, highlighting the crucial impact of fitting

    Distributed Acoustic Impedance Measurement Based On Forward Stimulated Brillouin Scattering

    Get PDF
    A technique to measure the local spectrum of forward stimulated Brillouin scattering (FSBS) along a standard optical fiber is proposed. The local acoustic impedance of surrounding material is retrieved from the measured FSBS resonance linewidth

    Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers

    Get PDF
    The performance of unipolar unicolor coded Brillouin optical time-domain analysis (BOTDA) is evaluated based on both Simplex and Golay codes. Four major detrimental factors that limit the system performance, including decoded-gain trace distortion, coding pulse power non-uniformity, polarization pulling and higher-order non-local effects, are thoroughly investigated. Through theoretical analysis and an experimental validations, solutions and optimal design conditions for unipolar unicolor coded BOTDA are clearly established. First, a logarithmic normalization approach is proposed to resolve the linear accumulated Brillouin amplification without distortion. Then it is found out that Simplex codes are more robust to pulse power non-uniformity compared to Golay codes; whilst the use of a polarization scrambler must be preferred in comparison to a polarization switch to mitigate uncompensated fading induced by polarization pulling in the decoded traces. These optimal conditions enables the sensing performance only limited by higher-order non-local effects. To secure systematic errors below 1.3 MHz on the Brillouin frequency estimation, while simultaneously reaching the maximum signal-to-noise ratio (SNR), a mathematical model is established to trade-off the key parameters in the design, i.e., the single-pulse Brillouin amplification, code length and probe power. It turns out that the optimal SNR performance depends in inverse proportion on the value of maximum single-pulse Brillouin amplification, which is ultimately determined by the spatial resolution. The analysis here presented is expected to serve as a quantitative guideline to design a distortion-free coded BOTDA system operating at maximum SNR

    Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses

    Get PDF
    Different approaches to implement unipolar Golay coding in Brillouin optical time-domain analysis based on a differential pulse pair (DPP) are investigated. The analysis points out that dedicated post-processing procedures must be followed to secure the sharp spatial resolution associated with the DPP method. Moreover, a novel hybrid Golay–DPP coding scheme is proposed, offering 1.5 dB signal-to-noise ratio improvement with respect to traditional unipolar Golay coding, while halving the measurement time, constituting a 3 dB overall coding gain enhancement. Proof-of-concept experiments validate the proposed technique, demonstrating a 50 cm spatial resolution over a 10.164 km long sensing fiber with a frequency uncertainty of 1.4 MHz

    Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake

    Get PDF
    Infrequent extreme events such as large earthquakes pose hazards and have lasting impacts on landscapes and biogeochemical cycles. Sediments provide valuable records of past events, but unambiguously identifying event deposits is challenging because of nonlinear sediment transport processes and poor age control. Here, we have been able to directly track the propagation of a tectonic signal into stratigraphy using reservoir sediments from before and after the 2008 Wenchuan earthquake. Cycles in magnetic susceptibility allow us to define a precise annual chronology and identify the timing and nature of the earthquake’s sedimentary record. The grain size and Rb/Sr ratio of the sediments responded immediately to the earthquake. However, the changes were muted until 2 years after the event, when intense monsoonal runoff drove accumulation of coarser grains and lower Rb/Sr sediments. The delayed response provides insight into how climatic and tectonic agents interact to control sediment transfer and depositional processes.This work was funded by the 2nd Tibetan Plateau Scientific Expedition and Research (2019QZKK0707) and CAS programs (QYZDJ-SSW-DQC033, XDA2007010202, and 132B61KYSB20170008) grants to Z.J. and SKLLQG grant (SKLLQGPY1603) to F.Z
    • 

    corecore