
TuC4.pdf 26th International Conference on Optical Fiber Sensors ©
OSA 2018

Distributed Acoustic Impedance Measurement 

Based On Forward Stimulated Brillouin Scattering 
 

Desmond M. Chow, Zhisheng Yang, Marcelo A. Soto†, Luc Thévenaz 
EPFL Swiss Federal Institute of Technology, Institute of Electrical Engineering, SCI STI LT, Station 11, CH-1015 Lausanne, Switzerland. 

†Current address: Department of Electronic Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile. 
Corresponding author e-mail: desmond.chow@epfl.ch 

 

Abstract: A technique to measure the local spectrum of forward stimulated Brillouin 

scattering (FSBS) along a standard optical fiber is proposed. The local acoustic impedance of 

surrounding material is retrieved from the measured FSBS resonance linewidth.  
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1. Introduction 

Forward stimulated Brillouin scattering (FSBS), also known as guided acoustic wave Brillouin scattering 

(GAWBS) [1], is an optoacoustic interaction in an optical fiber, in which the participating transverse acoustic 

waves are stimulated through electrostriction. Because of the bounded cross-section of the optical fiber, the 

transverse acoustic waves are confined into eigenmodes. The quality factors of these resonances depend on the 

acoustic impedance mismatch at the cladding-surrounding interface. Thus, by measuring the acoustic decay rate 

or the spectral linewidth of a selected resonance, the acoustic impedance of an external material can be retrieved 

[2-4]. The reported measurements of polarized FSBS relied on a pump and probe technique [1-2]. The pump 

stimulates the transverse acoustic waves in the fiber whereas the probe, which is in a different wavelength range, 

is configured into an interferometer to convert phase changes induced by radial transverse acoustic waves into 

intensity changes detectable by a photodetector. However, such measurements give responses that are integrated 

over the entire fiber length. As FSBS process scatters light in forward direction [1, 5], time-of-flight information 

cannot be obtained directly from the scattered light, hence the local FSBS measurement becomes challenging. 

In this work, we report a distributed FSBS spectrum measurement for the first time through recovering the 

longitudinal phase change of a guided reading light that is perturbed by the FSBS-induced transverse acoustic 

wave. The transverse acoustic waves in the optical fiber are first stimulated by a long optical pulse, which is 

intensity-modulated at a FSBS resonance frequency. Subsequently, a reading optical pulse (in another 

wavelength range) is introduced just after the FSBS activating pulse to be phase modulated by the transverse 

acoustic wave, thus generating multiple sidebands on the reading pulse spectrum. As the phase shifts 

experienced by the reading pulse accumulates along the fiber, the intensity of each sideband changes, following 

the corresponding order of Bessel functions. The intensity progression of several reading pulse sidebands are 

independently selected and measured as a function of distance over the fiber using Brillouin optical time-domain 

analysis (BOTDA) [6-7]. Thus, the longitudinal phase information of the reading pulse is retrieved 

mathematically from the measured intensity progressions of three reading pulse sidebands. The local response of 

FSBS is then obtained from numerical differentiation of the phase evolution. The eventual full distributed FSBS 

resonance spectrum is obtained by detuning the FSBS activating frequency around a selected FSBS resonant 

frequency. Here, we achieve distributed measurements of the FSBS resonance spectrum along a 730 m single-

mode fiber (SMF) with a spatial resolution of 15 m. 

2. FSBS Activation 

Firstly, the FSBS activation process is implemented by using a long optical pulse with superimposed sine 

intensity modulation, which originates a pulse spectrum containing a central and sideband components co-

propagating along the sensing fiber. The beating among the pulse spectral components can induce resonant 

transversal acoustic waves through FSBS at specific modulating frequencies νF. The resonant conditions are 

dictated by the boundary condition in a cylindrical structure. Thus, by launching an optical pulse that is intensity 

modulated at one of the FSBS resonance frequencies (see Fig. 1(a), red trace), a particular transversal FSBS-

induced acoustic mode can be stimulated inside the optical fiber (see Fig. 1(a), blue trace). These FSBS-induced 

acoustic waves propagate radially from the fiber core towards the optical fiber cladding boundary. Depending 

on the acoustic impedance of the outer material, the transversal acoustic wave resonating inside the optical fiber 

experiences a partial reflection at the optical fiber boundary due to the acoustic impedance mismatch with silica, 

affecting the decay time of the acoustic field and thus the spectral linewidth of the FSBS resonances. When the 

modulation frequency νF matches one of the resonance frequencies, efficient FSBS is activated, resulting in a 

resonating transversal density acoustic wave that periodically modifies the local refractive index of the fiber 

core, expressed as in Eq. (1), where An(z) is the amplitude of refractive index perturbation.  
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Fig. 1. (a) The participating light and acoustic waves in the distributed FSBS spectrum measurement. (b) The simulated longitudinal 

spectrum evolution of the reading pulse that is perturbed by the transverse acoustic waves. 

3. Reading Pulse 

The FSBS-induced refractive index changes can in turn modulate the phase of any light propagating inside the 

fiber core through photoelastic effect and generates new co-propagating spectral sidebands. Therefore, by 

launching another optical signal (see Fig. 1(a), green trace) at a distinct wavelength into the sensing fiber and 

measuring the longitudinal evolution of the newly generated spectral sidebands, local information of the FSBS-

induced phase shift can be recovered along the entire sensing fiber. However, the intense FSBS activation pulse 

simultaneously generates an additional phase modulation in the reading pulse due to Kerr cross-phase 

modulation thus disturbing the measurement of the FSBS-induced phase shift. Hence, to avoid this unwanted 

effect, the reading optical pulse is launched into the sensing fiber immediately after the FSBS activating pulse, 

so that it only interacts with the decay tail of the FSBS acoustic wave [4]. 

As the reading pulse propagates in the presence of the transversal acoustic resonance only, it experiences a 

phase shift ϕ(z) that accumulates over distance, expressed in Eq. (2), where ξ(z) is a quantity defining the 

accumulated phase amplitude over distance and is referred as phase factor. 
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Consequently, the input reading pulse spectrum will gradually degenerate during propagation into a series of 

spectral sidebands (see Fig. 1(b)). For a given ξ(z), the amplitude of the optical field associated to the nth order 

spectral sideband is defined by the amplitude of the ordinary Bessel function of order n, Jn(ξ). As the reading 

pulse propagates along the fiber, ξ(z) is monotonically increasing with z, therefore the peak intensity of the nth 

spectral sideband evolves along the sensing fiber according to the n order Bessel function. In other words, the 

local intensity of each spectral sideband is given by Jn
2(ξ), which in turn is determined by ξ(z) experienced by 

the reading pulse between the fiber input at z = 0 and each local position z in the optical fiber. 

4. Sidebands Mapping 

Each sideband progression Jn
2(ξ) can be retrieved using BOTDA because the Brillouin gain spectrum (BGS) 

width (~30 MHz) is much narrower than the separation between spectral sidebands νF [6-7]. For this, a 

continuous-wave (CW) BSBS probe signal is launched into the sensing fiber in the opposite direction compared 

to the pulse propagation, thus interacting with one of the reading pulse’s modulation sidebands by BSBS. 

Knowing the resonance frequency of the BSBS in the fiber, commonly called Brillouin frequency shift νB 

(BFS), the CW probe wave can be spectrally positioned at an optical frequency that is red-shifted by νB ⎼ nνF 

from the pump frequency, where n is the order of spectral sideband. As a result, the intensity progression of the 

nth forward-moving spectral sideband Jn
2(ξ) can be retrieved as a function of distance over the sensing fiber. The 

principle of this local light intensity interrogating technique in the proposed FSBS local phase recovery analysis 

is comparable to the one previously used in the literature to monitor 4-wave mixing signals with the aim of 

obtaining the position-resolved value of chromatic dispersion [8]. 

5. Recovery of phase information 

The recurrence properties of Bessel functions is used here to recover ξ from the measured Jn
2(ξ) from three 

consecutive spectral sidebands. This way, ξ can be robustly determined independent of the power loss of the 

reading pulse. A simple form of the Bessel recurrence relation can be written as, 
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where n is the Bessel function order. The 0th, 1st and 2nd order spectral sidebands can be selected to maximize the 

signal-to-noise ratio (SNR) of the detected traces as they have the highest intensities as compared to the other 

higher-order Jn
2(ξ). ξ(z) is yielded by solving ξ in Eq. 4 with n = 1, 
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Since the detected BSBS traces map the optical intensity rather than the field amplitude of the spectral sidebands 

of the phase-modulated reading pulse, the square root values of the acquired J0, J1 and J2 sideband traces must 

be calculated for retrieving ξ(z). 

6. Local FSBS response  

From the acquisition, the intensity progression Jn
2(ξ) around the FSBS resonant frequency for the first three 

orders sidebands are stored and processed. The data are processed trace by trace for each scanned frequency νF 

in the entire FSBS scanning range. For better understanding, the data processing steps are here detailed only for 

the traces measured at the selected resonant frequency (322 MHz). The intensity traces of the 0th, 1st and 2nd 

order spectral sidebands, which have been obtained from their respective BGS peak amplitudes, are plotted in 

Fig. 2(a). The ξ(z) trace is retrieved by applying the Bessel function recurrence relation in Eq. (4) pointwise at 

each spatial location (see Fig. 2(b)). 

Subsequently, An(z) - the amplitude of refractive index perturbation, along the optical fiber is computed by 

numerical differentiation. To mitigate the impact of the measurement noise on the numerical differentiation, the 

process is carried out by segmenting the data points of the trace and calculating their respective average value in 

the segment. The segment length defines the spatial resolution of the final measurements. Differentiation is then 

performed by subtracting the average value of each segment with that of the segment before. The result is shown 

in Fig. 2(c). The spatial resolution of each segment is set as 15 m in this experiment to achieve a good balance 

between the number of resolved points and the SNR of the retrieved ξ(z). The noise source of ξ(z) is mainly 

attributed to the inhomogeneity of the BGS peak frequency that could arise from several factors including strain 

variations along the optical fiber due to coiling and an imperfect compensation of the BSBS probe light 

polarization fading in the traces. 

 

Fig. 2. (a) The experimentally obtained longitudinal intensity progression of reading pulse sidebands. (b) The phase factor ξ(z) recovered 

using Bessel recurrence relation. (c) The FSBS response after differentiating the phase factor ξ(z).  

7. Sensing demonstration  

A segment of 30 m uncoated optical fiber is exposed to three different outer environments (air, ethanol and 

water). The experimentally obtained distributed FSBS spectra is shown in Fig. 3. The exposed region could be 

clearly identified in the FSBS distributed spectra maps thanks to the strong resonance obtained by the efficient 

acoustic wave reflection at the fiber boundary. The rest of the sensing fiber keeps its original acrylate coating, 

which reduces significantly the acoustic wave reflection. The local FSBS spectral response in the coated 

segments can be nevertheless observed, though with a much reduced amplitude contrast. 

 

Fig. 3. Measured distributed FSBS spectra when the 30 m exposed fiber segment is surrounded by (a) air, (b) ethanol and (c) water.  
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The FSBS resonance spectra at the exposed fiber segment are shown in Fig. 4. In the presence of different 

outer media, the FSBS resonance linewidth changes in an inverse proportion to the resonance peak intensity; i.e. 

as the resonance linewidth broadens, the resonance peak intensity decreases. The FSBS spectrum of the normal 

uncoated fiber segment with acrylate polymer coating (Fig. 4, blue) are plotted alongside as reference for 

comparison. The FSBS linewidth of each liquid sample is related to the acoustic impedances Zo of the outer 

material and Zf of the fiber material by [4], 
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where δνm is the measured FSBS linewidth, δνs is the intrinsic FSBS linewidth of the silica fiber, and 

Δνm = 48 MHz is the average frequency separation between the chosen resonant frequency (322 MHz) and the 

two adjacent FSBS spectral resonances. Zf is the acoustic impedance of silica (13.19×106 kg/m2s). 

 

Fig. 4. The FSBS spectra in the 30 m exposed fiber segment when it is surrounded by (a) air, (b) ethanol and (c) water.  

The intrinsic acoustic loss defining δνs is estimated from the resonance linewidth when the uncoated fiber 

section is exposed to air, since under this condition nearly perfect acoustic reflection at the optical fiber 

boundary is obtained owing to the very large acoustic impedance mismatch. The intrinsic linewidth δνs 

(~100 kHz) is considered in this case as solely due to the bulk viscous damping of silica. The measured FWHM 

δνFWHM of the FSBS resonance spectrum for air, ethanol and water are respectively 1.81 MHz, 2.86 MHz and 

4.12 MHz. However, because of the finite duration of the FSBS stimulating pulse, the measured FSBS spectrum 

indeed corresponds to a convolution of the pulse spectrum (sinc function) and the original FSBS resonance 

spectrum (Lorentzian function). Therefore, a full analytical expression of the broadened gain spectrum for a 

given stimulating pulse duration is used here to fit the measured FSBS spectrum. The original FSBS resonance 

linewidth δνm successfully retrieved from the fittings are 0.10 MHz, 2.25 MHz and 3.57 MHz for air, ethanol 

and water exposures, respectively. The corresponding acoustic impedances of the outer materials at the exposed 

fiber segment are then calculated based on Eq. 5, resulting in 1.49×106 kg/m2s for water, and 0.93×106 kg/m2s 

for ethanol. These results agree well with the standard acoustic impedance values of water: 1.483×106 kg/m2s, 

and ethanol: 0.93×106 kg/m2s (published online by NDT Resource Center, http://www.nde-ed.org). 

8. Conclusion  

A technique to perform distributed FSBS spectrum measurements along a fiber is demonstrated for the first time 

where the local acoustic impedance of surrounding liquids can be accurately retrieved. The stripping of fiber 

coating in this work is to simplify the calculation of acoustic impedance. The practical handling issues can be 

simply overcome by using commercial fibers coated with a thin polymer layer, the same technique here applied.   
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