961 research outputs found

    Dynamic Pairing Effects on Low-Frequency Modes of Excitation in Deformed Mg Isotopes close to the Neutron Drip Line

    Full text link
    Low-frequency quadrupole vibrations in deformed 36,38,40{}^{36,38,40}Mg are studied by means of the deformed Quasiparticle-RPA based on the coordinate-space Hartree-Fock-Bogoliubov formalism. Strongly collective Kπ=0+K^{\pi}=0^{+} and 2+2^{+} excitation modes (carrying 10-20 W.u.) are obtained at about 3 MeV. It is found that dynamical pairing effects play an essential role in generating these modes. It implies that the lowest Kπ=0+K^{\pi}=0^{+} excitation modes are particularly sensitive indicators of dynamical pairing correlations in deformed nuclei near the neutron drip line.Comment: Talk given at Int. Conference "Finite Fermionic Systems: Nilsson Model 50 Years", Lund, Sweden, June 14-18, 200

    Kakutani Dichotomy on Free States

    Full text link
    Two quasi-free states on a CAR or CCR algebra are shown to generate quasi-equivalent representations unless they are disjoint.Comment: 12 page

    Nuclear Tetrahedral Symmetry: Possibly Present Throughout the Periodic Table

    Full text link
    More than half a century after the fundamental, spherical shell structure in nuclei has been established, theoretical predictions indicate that the shell-gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TdDT_d^D ('double-tetrahedral') group of symmetry, exact or approximate. The corresponding strong shell-gap structure is markedly enhanced by the existence of the 4-dimensional irreducible representations of the group in question and consequently it can be seen as a geometrical effect that does not depend on a particular realization of the mean-field. Possibilities of discovering the corresponding symmetry in experiment are discussed.Comment: 4 pages in LaTeX and 4 figures in eps forma

    Thermoelectric power quantum oscillations in the ferromagnet UGe2_2

    Full text link
    We present thermoelectric power and resistivity measurements in the ferromagnet UGe2_2 as a function of temperature and magnetic field. At low temperature, huge quantum oscillations are observed in the thermoelectric power as a function of the magnetic field applied along the aa axis. The frequencies of the extreme orbits are determined and an analysis of the cyclotron masses is performed following different theoretical approaches for quantum oscillations detected in the thermoelectric power. They are compared to those obtained by Shubnikov-de Haas experiments on the same crystal and previous de Haas-van Alphen experiments. The agreement of the different probes confirms thermoelectric power as an excellent probe to extract simultaneously both microscopic and macroscopic information on the Fermi-surface properties. Band-structure calculations of UGe2_2 in the ferromagnetic state are compared to the experiment.Comment: 10 figures, 12 pages, accepted for publication in Phys. Rev.

    On Gouva's conjecture in the unobstructed case

    Get PDF
    In this article, for a residual Galois representation defined m·er an arbitrary finite field, Gouvca's conjecture ,vhich says that the universal deformation ring is isomorphic to a certain Hecke algebra is proven in the unobstructed case

    On certain finiteness questions in the arithmetic of modular forms

    Get PDF
    We investigate certain finiteness questions that arise naturally when studying approximations modulo prime powers of p-adic Galois representations coming from modular forms. We link these finiteness statements with a question by K. Buzzard concerning p-adic coefficient fields of Hecke eigenforms. Specifically, we conjecture that for fixed N, m, and prime p with p not dividing N, there is only a finite number of reductions modulo p^m of normalized eigenforms on \Gamma_1(N). We consider various variants of our basic finiteness conjecture, prove a weak version of it, and give some numerical evidence.Comment: 25 pages; v2: one of the conjectures from v1 now proved; v3: restructered parts of the article; v4: minor corrections and change

    Pressure dependence of the magnetization in the ferromagnetic superconductor UGe_2

    Full text link
    The recent discovery that superconductivity occurs in several clean itinerant ferromagnets close to low temperature magnetic instabilities naturally invites an interpretation based on a proximity to quantum criticality. Here we report measurements of the pressure dependence of the low temperature magnetisation in one of these materials, UGe_2. Our results show that both of the magnetic transitions observed in this material as a function of pressure are first order transitions and do not therefore correspond to quantum critical points. Further we find that the known pressure dependence of the superconducting transition is not reflected in the pressure dependence of the static susceptibility. This demonstrates that the spectrum of excitations giving superconductivity is not that normally associated with a proximity to quantum criticality in weak itinerant ferromagnets. In contrast our data suggest that instead the pairing spectrum might be related to a sharp spike in the electronic density of states that also drives one of the magnetic transitions.Comment: to appear in Phys. Rev. Let
    corecore