135 research outputs found

    Surface states, Friedel oscillations, and spin accumulation in p-doped semiconductors

    Full text link
    We consider a hole-doped semiconductor with a sharp boundary and study the boundary spin accumulation in response to a charge current. First, we solve exactly a single-particle quantum mechanics problem described by the isotropic Luttinger model in half-space and construct an orthonormal basis for the corresponding Hamiltonian. It is shown that the complete basis includes two types of eigenstates. The first class of states contains conventional incident and reflected waves, while the other class includes localized surface states. Second, we consider a many-body system in the presence of a charge current flowing parallel to the boundary. It is shown that the localized states contribute to spin accumulation near the surface. We also show that the spin density exhibits current-induced Friedel oscillations with three different periods determined by the Fermi momenta of the light and heavy holes. We find an exact asymptotic expression for the Friedel oscillations far from the boundary. We also calculate numerically the spin density profile and compute the total spin accumulation, which is defined as the integral of the spin density in the direction perpendicular to the boundary. The total spin accumulation is shown to fit very well the simple formula S ~(1 - m_L/m_H)^2, where m_L and m_H are the light- and heavy-hole masses. The effects of disorder are discussed. We estimate the spin relaxation time in the Luttinger model and argue that spin physics cannot be described within the diffusion approximation.Comment: 22 pages, 8 color figure

    Ordering of magnetic impurities and tunable electronic properties of topological insulators

    Full text link
    We study collective behavior of magnetic adatoms randomly distributed on the surface of a topological insulator. As a consequence of the spin-momentum locking on the surface, the RKKY-type interactions of two adatom spins depend on the direction of the vector connecting them, thus interactions of an ensemble of adatoms are frustrated. We show that at low temperatures the frustrated RKKY interactions give rise to two phases: an ordered ferromagnetic phase with spins pointing perpendicular to the surface, and a disordered spin-glass-like phase. The two phases are separated by a quantum phase transition driven by the magnetic exchange anisotropy. Ferromagnetic ordering occurs via a finite-temperature phase transition. The ordered phase breaks time-reversal symmetry spontaneously, driving the surface states into a gapped state, which exhibits an anomalous quantum Hall effect and provides a realization of the parity anomaly. We find that the magnetic ordering is suppressed by potential scattering. Our work indicates that controlled deposition of magnetic impurities provides a way to modify the electronic properties of topological insulators.Comment: 4+ pages, 2 figure

    Mesoscopic mechanism of exchange interaction in magnetic multilayers

    Full text link
    We discuss a mesoscopic mechanism of exchange interaction in ferromagnet-normal metal-ferromagnet multilayers. We show that in the case when the metal's thickness is larger than the electron mean free path, the relative orientation of magnetizations in the ferromagnets is perpendicular. The exchange energy between ferromagnets decays with the metal thickness as a power law

    Edge spin accumulation in a ballistic regime

    Full text link
    We consider a mesoscopic {\it ballistic} structure with Rashba spin-orbit splitting of the electron spectrum. The ballistic region is attached to the leads with a voltage applied between them. We calculate the edge spin density which appears in the presence of a charge current through the structure due to the difference in populations of electrons coming from different leads. Combined effect of the boundary scattering and spin precession leads to oscillations of the edge polarization with the envelope function decaying as a power law of the distance from the boundary. The problem is solved with the use of scattering states. The simplicity of the method allows to gain an insight into the underlaying physics. We clarify the role of the unitarity of scattering for the problem of edge spin accumulation. In case of a straight boundary it leads to exact cancellation of all long-wave oscillations of the spin density. As a result, only the Friedel-like spin density oscillations with the momentum 2k_F survive. However, this appears to be rather exceptional case. In general, the smooth spin oscillations with the spin precession length recover, as it happens, e.g., for the wiggly boundary. We demonstrate also, that there is no relation between the spin current in the bulk, which is zero in the considered case, and the edge spin accumulation.Comment: Latex, 6 pages, 2 fig

    Point contact spectroscopy of hopping transport: effects of a magnetic field

    Full text link
    The conductance of a point contact between two hopping insulators is expected to be dominated by the individual localized states in its vicinity. Here we study the additional effects due to an external magnetic field. Combined with the measured conductance, the measured magnetoresistance provides detailed information on these states (e.g. their localization length, the energy difference and the hopping distance between them). We also calculate the statistics of this magnetoresistance, which can be collected by changing the gate voltage in a single device. Since the conductance is dominated by the quantum interference of particular mesoscopic structures near the point contact, it is predicted to exhibit Aharonov-Bohm oscillations, which yield information on the geometry of these structures. These oscillations also depend on local spin accumulation and correlations, which can be modified by the external field. Finally, we also estimate the mesoscopic Hall voltage due to these structures.Comment: 7 pages, 5 figur

    Transmission through a n interacting quantum dot in the Coulomb blockade regime

    Full text link
    The influence of electron-electron (e-e) interactions on the transmission through a quantum dot is investigated numerically for the Coulomb blockade regime. For vanishing magnetic fields, the conductance peak height statistics is found to be independent of the interactions strength. It is identical to the statistics predicted by constant interaction single electron random matrix theory and agrees well with recent experiments. However, in contrast to these random matrix theories, our calculations reproduces the reduced sensitivity to magnetic flux observed in many experiments. The relevant physics is traced to the short range Coulomb correlations providing thus a unified explanation for the transmission statistics as well as for the large conductance peak spacing fluctuations observed in other experiments.Comment: Final version as publishe

    Concentration dependence of the transition temperature in metallic spin glasses

    Get PDF
    The dependence of the transition temperature TgT_g in terms of the concentration of magnetic impurities cc in spin glasses is explained on the basis of a screened RKKY interaction. The two observed power laws, Tg cT_g ~ c at low cc and Tg c2/3T_g ~ c^{2/3} for intermediate cc, are described in a unified approach.Comment: 4 page

    Disorder-quenched Kondo effect in mesosocopic electronic systems

    Full text link
    Nonmagnetic disorder is shown to quench the screening of magnetic moments in metals, the Kondo effect. The probability that a magnetic moment remains free down to zero temperature is found to increase with disorder strength. Experimental consequences for disordered metals are studied. In particular, it is shown that the presence of magnetic impurities with a small Kondo temperature enhances the electron's dephasing rate at low temperatures in comparison to the clean metal case. It is furthermore proven that the width of the distribution of Kondo temperatures remains finite in the thermodynamic (infinite volume) limit due to wave function correlations within an energy interval of order 1/Ï„1/\tau, where Ï„\tau is the elastic scattering time. When time-reversal symmetry is broken either by applying a magnetic field or by increasing the concentration of magnetic impurities, the distribution of Kondo temperatures becomes narrower.Comment: 17 pages, 7 figures, new results on Kondo effect in quasi-1D wires added, 6 Refs. adde

    Zero-Field Satellites of a Zero-Bias Anomaly

    Full text link
    Spin-orbit (SO) splitting, ±ωSO\pm \omega_{SO}, of the electron Fermi surface in two-dimensional systems manifests itself in the interaction-induced corrections to the tunneling density of states, ν(ϵ)\nu (\epsilon). Namely, in the case of a smooth disorder, it gives rise to the satellites of a zero-bias anomaly at energies ϵ=±2ωSO\epsilon=\pm 2\omega_{SO}. Zeeman splitting, ±ωZ\pm \omega_{Z}, in a weak parallel magnetic field causes a narrow {\em plateau} of a width δϵ=2ωZ\delta\epsilon=2\omega_{Z} at the top of each sharp satellite peak. As ωZ\omega_{Z} exceeds ωSO\omega_{SO}, the SO satellites cross over to the conventional narrow maxima at ϵ=±2ωZ\epsilon = \pm 2\omega_{Z} with SO-induced plateaus δϵ=2ωSO\delta\epsilon=2\omega_{SO} at the tops.Comment: 7 pages including 2 figure

    Interaction effects in 2D electron gas in a random magnetic field: Implications for composite fermions and quantum critical point

    Full text link
    We consider a clean two-dimensional interacting electron gas subject to a random perpendicular magnetic field, h({\bf r}). The field is nonquantizing, in the sense, that {\cal N}_h-a typical flux into the area \lambda_{\text{\tiny F}}^2 in the units of the flux quantum (\lambda_{\text{\tiny F}} is the de Broglie wavelength) is small, {\cal N}_h\ll 1. If the spacial scale, \xi, of change of h({\bf r}) is much larger than \lambda_{\text{\tiny F}}, the electrons move along semiclassical trajectories. We demonstrate that a weak field-induced curving of the trajectories affects the interaction-induced electron lifetime in a singular fashion: it gives rise to the correction to the lifetime with a very sharp energy dependence. The correction persists within the interval \omega \sim \omega_0= E_{\text{\tiny F}}{\cal N}_h^{2/3} much smaller than the Fermi energy, E_{\text{\tiny F}}. It emerges in the third order in the interaction strength; the underlying physics is that a small phase volume \sim (\omega/E_{\text{\tiny F}})^{1/2} for scattering processes, involving {\em two} electron-hole pairs, is suppressed by curving. Even more surprising effect that we find is that {\em disorder-averaged} interaction correction to the density of states, \delta\nu(\omega), exhibits {\em oscillatory} behavior, periodic in \bigl(\omega/\omega_0\bigr)^{3/2}. In our calculations of interaction corrections random field is incorporated via the phases of the Green functions in the coordinate space. We discuss the relevance of the new low-energy scale for realizations of a smooth random field in composite fermions and in disordered phase of spin-fermion model of ferromagnetic quantum criticality.Comment: 32 pages, 15 figures, Revte
    • …
    corecore