40,363 research outputs found

    Thermodynamic consistency of liquid-gas lattice Boltzmann simulations

    Full text link
    Lattice Boltzmann simulations have been very successful in simulating liquid-gas and other multi-phase fluid systems. However, the underlying second order analysis of the equation of motion has long been known to be insufficient to consistently derive the fourth order terms that are necessary to represent an extended interface. These same terms are also responsible for thermodynamic consistency, i.e. to obtain a true equilibrium solution with both a constant chemical potential and a constant pressure. In this article we present an equilibrium analysis of non-ideal lattice Boltzmann methods of sufficient order to identify those higher order terms that lead to a lack of thermodynamic consistency. We then introduce a thermodynamically consistent forcing method.Comment: 12 pages, 8 figure

    AGN Feedback Compared: Jets versus Radiation

    Full text link
    Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of 104310^{43} and 104610^{46} erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20%20\% in 2020 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.010.10.01-0.1 M_\odot/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.Comment: 21 pages, 15 figures, 2 table

    Numerical Investigation of Second Mode Attenuation over Carbon/Carbon Surfaces on a Sharp Slender Cone

    Full text link
    We have carried out axisymmetric numerical simulations of a spatially developing hypersonic boundary layer over a sharp 7^{\circ{}}-half-angle cone at M=7.5M_\infty=7.5 inspired by the experimental investigations by Wagner (2015). Simulations are first performed with impermeable (or solid) walls with a one-time broadband pulse excitation applied upstream to determine the most convectively-amplified frequencies resulting in the range 260kHz -- 400kHz, consistent with experimental observations of second-mode instability waves. Subsequently, we introduce harmonic disturbances via continuous periodic suction and blowing at 270kHz and 350kHz. For each of these forcing frequencies complex impedance boundary conditions (IBC), modeling the acoustic response of two different carbon/carbon (C/C) ultrasonically absorptive porous surfaces, are applied at the wall. The IBCs are derived as an output of a pore-scale aeroacoustic analysis -- the inverse Helmholtz Solver (iHS) -- which is able to return the broadband real and imaginary components of the surface-averaged impedance. The introduction of the IBCs in all cases leads to a significant attenuation of the harmonically-forced second-mode wave. In particular, we observe a higher attenuation rate of the introduced waves with frequency of 350kHz in comparison with 270kHz, and, along with the iHS impedance results, we establish that the C/C surfaces absorb acoustic energy more effectively at higher frequencies.Comment: AIAA-SciTech 201

    An H-Theorem for the Lattice Boltzmann Approach to Hydrodynamics

    Full text link
    The lattice Boltzmann equation can be viewed as a discretization of the continuous Boltzmann equation. Because of this connection it has long been speculated that lattice Boltzmann algorithms might obey an H-theorem. In this letter we prove that usual nine-velocity models do not obey an H-theorem but models that do obey an H-theorem can be constructed. We consider the general conditions a lattice Boltzmann scheme must satisfy in order to obey an H-theorem and show why on a lattice, unlike the continuous case, dynamics that decrease an H-functional do not necessarily lead to a unique ground state.Comment: 6 pages, latex, no figures, accepted for publication in Europhys. Let

    Ultrafast outflows: Galaxy-scale active galactic nucleus feedback

    Get PDF
    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy

    XMM-Newton observations of HESS J1813-178 reveal a composite Supernova remnant

    Get PDF
    We present X-ray and 12CO(J=1-0) observations of the very-high-energy (VHE) gamma-ray source HESS J1813-178 with the aim of understanding the origin of the gamma-ray emission. Using this dataset we are able to undertake spectral and morphological studies of the X-ray emission from this object with greater precision than previous studies. NANTEN 12CO(J=1-0) data are used to search for correlations of the gamma-ray emission with molecular clouds which could act as target material for gamma-ray production in a hadronic scenario. The NANTEN 12CO(J=1-0) observations show a giant molecular cloud of mass 2.5 10^5 M_{\sun} at a distance of 4 kpc in the vicinity of HESS J1813-178. Even though there is no direct positional coincidence, this giant cloud might have influenced the evolution of the gamma-ray source and its surroundings. The X-ray data show a highly absorbed non-thermal X-ray emitting object coincident with the previously known ASCA source AX J1813-178 showing a compact core and an extended tail towards the north-east, located in the centre of the radio shell-type Supernova remnant (SNR) G12.82-0.2. This central object shows morphological and spectral resemblance to a Pulsar Wind Nebula (PWN) and we therefore consider that the object is very likely to be a composite SNR. We discuss the scenario in which the gamma-rays originate in the shell of the SNR and the one in which they originate in the central object. We demonstrate, that in order to connect the core X-ray emission to the VHE gamma-ray emission electrons have to be accelerated to energies of at least 1 PeV.Comment: Submitted to A&
    corecore