115 research outputs found

    The Genetic Basis of Tomato Aroma

    Get PDF
    Tomato (Solanum lycopersicum L.) aroma is determined by the interaction of volatile compounds (VOCs) released by the tomato fruits with receptors in the nose, leading to a sensorial impression, such as “sweet”, “smoky”, or “fruity” aroma. Of the more than 400 VOCs released by tomato fruits, 21 have been reported as main contributors to the perceived tomato aroma. These VOCs can be grouped in five clusters, according to their biosynthetic origins. In the last decades, a vast array of scientific studies has investigated the genetic component of tomato aroma in modern tomato cultivars and their relatives. In this paper we aim to collect, compare, integrate and summarize the available literature on flavour-related QTLs in tomato. Three hundred and 5ifty nine (359) QTLs associated with tomato fruit VOCs were physically mapped on the genome and investigated for the presence of potential candidate genes. This review makes it possible to (i) pinpoint potential donors described in literature for specific traits, (ii) highlight important QTL regions by combining information from different populations, and (iii) pinpoint potential candidate genes. This overview aims to be a valuable resource for researchers aiming to elucidate the genetics underlying tomato flavour and for breeders who aim to improve tomato aroma.</p

    Amino Acids Are an Ineffective Fertilizer for Dunaliella spp. Growth

    Get PDF
    Autotrophic microalgae are a promising bioproducts platform. However, the fundamental requirements these organisms have for nitrogen fertilizer severely limit the impact and scale of their cultivation. As an alternative to inorganic fertilizers, we investigated the possibility of using amino acids from deconstructed biomass as a nitrogen source in the genus Dunaliella. We found that only four amino acids (glutamine, histidine, cysteine, and tryptophan) rescue Dunaliella spp. growth in nitrogen depleted media, and that supplementation of these amino acids altered the metabolic profile of Dunaliella cells. Our investigations revealed that histidine is transported across the cell membrane, and that glutamine and cysteine are not transported. Rather, glutamine, cysteine, and tryptophan are degraded in solution by a set of oxidative chemical reactions, releasing ammonium that in turn supports growth. Utilization of biomass-derived amino acids is therefore not a suitable option unless additional amino acid nitrogen uptake is enabled through genetic modifications of these algae

    Characterization of the complete genome sequence of the recombinant norovirus GII.P16/GII.4_Sydney_2012 revealed in Russia

    Get PDF
    Noroviruses (the Caliciviridae family) are a common cause of acute gastroenteritis in all age groups. These small non-envelope viruses with a single-stranded (+)RNA genome are characterized by high genetic variability. Continuous changes in the genetic diversity of co-circulating noroviruses and the emergence of new recombinant variants are observed worldwide. Recently, new recombinant noroviruses with a novel GII.P16 polymerase associated with different capsid proteins VP1 were reported. As a part of the surveillance study of sporadic cases of acute gastroenteritis in Novosibirsk, a total of 46 clinical samples from children with diarrhea were screened in 2016. Norovirus was detected in six samples from hospitalized children by RT-PCR. The identified noroviruses were classified as recombinant variants GII.P21/GII.3, GII.Pe/GII.4_Sydney_2012, and GII.P16/GII.4_Sydney_2012 by sequencing of the ORF1/ORF2 junction. In Novosibirsk, the first appearance of the new recombinant genotype GII.P16/GII.4_Sydney_2012 was recorded in spring 2016. Before this study, only four complete genome sequences of the Russian GII.P16/GII.3 norovirus strains were available in the GenBank database. In this work, the complete genome sequence of the Russian strain Hu/GII.P16-GII.4/RUS/Novosibirsk/NS16-C38/2016 (GenBank KY210980) was determined. A comparison of the nucleotide and the deduced amino acid sequences showed a high homology of the Russian strain with GII.P16/GII.4_Sydney_2012 strains from other parts of the world. A comparative analysis showed that several unique substitutions occurred in the GII.P16 polymerase, N-terminal p48 protein, and minor capsid protein VP2 genes, while no unique changes in the capsid VP1 gene were observed. A functional significance of these changes suggests that a wide distribution of the strains with the novel GII.P16 polymerase may be associated both with several amino acid substitutions in the polymerase active center and with the insertion of glutamic acid or glycine in an N-terminal p48 protein that blocks the secretory immunity of intestinal epithelial cells. Further monitoring of genotypes will allow determining the distribution of norovirus recombinants with the polymerase GII.P16 in Russia

    Identification of the etiological agent of equine piroplasmosis in Western and Eastern Siberia

    Get PDF
    Equine piroplasmosis is a natural tick-borne infection caused by hemoprotozoan parasites of the order Piroplasmida, Babesia caballi and Theileria equi. Animals that recover from piroplasmosis remain persistently infected carriers and can transmit pathogens to vector ticks. Cases of equine piroplasmosis are periodically observed in Siberia, however, no agent of equine piroplasmosis has yet been genetically characterized in Russia. The aim of this work was studying the prevalence of the infectious agents of piroplasmosis in horses from Siberia and genotyping the detected agents. Blood samples from 155 horses were examined for the presence of Babesia and Theileria DNA by nested PCR with the subsequent sequencing of positive samples. DNA of T. equi was found in blood samples from 57.9 %, 38.5 % and 65.0 % of horses from Novosibirsk province, Irkutsk province, and the Republic of Altai, respectively. T. equi DNA was found in the samples from almost all sampling sites included in this study, indicating that most of the studied sites are endemic for equine theileriosis. Surprisingly, DNA of B. caballi was not found in any of the samples examined, even though this agent had previously been detected in many regions in Russia, including Altai. The analysis of the determined 18S rRNA gene sequences demonstrated that T. equi samples belonged to two genetic groups, which differed significantly by the sequences of the variable (V4) region of the gene. All T. equi sequences from group B were identical and corresponded to T. equi sequences found in the blood of horses from China and Korea, while T. equi sequences from group A differed by 1–5 nucleotide substitutions and were identical to the sequences from the blood of horses from India and Brazil or differed from them by single mismatches. Notably, in this study the presence of etiological agent of piroplasmosis in blood samples from horses in Russia was genetically confirmed for the first time

    Babesia infection of small mammals from southern taiga of Omsk region

    Get PDF
    Blood samples were taken from 541 small mammal captured in 2013-2015 in Znamensky district of Omsk region from Ixodes persulcatus and Ixodes trianguliceps sympatric area and examined for the Babesia spp. presence by nested PCR with subsequent sequencing of positive samples. Babesia microti DNA was found in 31,1 % of positive samples; a proportion of infected mammals varied from 5,3 % to 61,6 % in different sampling periods. B. microti DNA was found in samples from three prevailing Myodes species as well as from a root vole (Microtus oeconomus), field voles (Microtus argestis) and Siberian chipmunks (Tamias sibiricus). It was shown that identified B. microti samples belong to two genetic groups: B. microti 'US'-type and B. microti 'Munich'-type; notably that > 90 % infected mammals contained DNA of nonpathogenic for human B. microti 'Munich'-type. We suppose that I. trianguliceps tick is the most probable vector of B. microti 'Munich'-type

    Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species

    Get PDF
    The volatile composition of fruit from four Citrus varieties (Powell Navel orange, Clemenules mandarine, and Fortune mandarine and Chandler pummelo) covering four different species has been studied. Over one hundred compounds were profiled after HS-SPME-GC-MS analysis, including 27 esters, 23 aldehydes, 21 alcohols, 13 monoterpene hydrocarbons, 10 ketones, 5 sesquiterpene hydrocarbons, 4 monoterpene cyclic ethers, 4 furans, and 2 aromatic hydrocarbons, which were all confirmed with standards. The differences in the volatile profile among juices of these varieties were essentially quantitative and only a few compounds were found exclusively in a single variety, mainly in Chandler. The volatile profile however was able to differentiate all four varieties and revealed complex interactions between them including the participation in the same biosynthetic pathway. Some compounds (6 esters, 2 ketones, 1 furan and 2 aromatic hydrocarbons) had never been reported earlier in Citrus juices. This volatile profiling platform for Citrus juice by HS-SPME-GC-MS and the interrelationship detected among the volatiles can be used as a roadmap for future breeding or biotechnological applications

    Constraint-based probabilistic learning of metabolic pathways from tomato volatiles

    Get PDF
    Clustering and correlation analysis techniques have become popular tools for the analysis of data produced by metabolomics experiments. The results obtained from these approaches provide an overview of the interactions between objects of interest. Often in these experiments, one is more interested in information about the nature of these relationships, e.g., cause-effect relationships, than in the actual strength of the interactions. Finding such relationships is of crucial importance as most biological processes can only be understood in this way. Bayesian networks allow representation of these cause-effect relationships among variables of interest in terms of whether and how they influence each other given that a third, possibly empty, group of variables is known. This technique also allows the incorporation of prior knowledge as established from the literature or from biologists. The representation as a directed graph of these relationship is highly intuitive and helps to understand these processes. This paper describes how constraint-based Bayesian networks can be applied to metabolomics data and can be used to uncover the important pathways which play a significant role in the ripening of fresh tomatoes. We also show here how this methods of reconstructing pathways is intuitive and performs better than classical techniques. Methods for learning Bayesian network models are powerful tools for the analysis of data of the magnitude as generated by metabolomics experiments. It allows one to model cause-effect relationships and helps in understanding the underlying processes

    Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation

    Get PDF
    Although progress has been made in the characterization of p53 in regulating metabolism, very little is known about the signaling pathways involved in this regulation in response to stress in vivo. Here we show that p53 controls hepatic fatty acid oxidation in mice in response to fasting. Disruption of ribosome protein (RP)-mouse double minute (Mdm)2 binding in Mdm2C305F mice results in fasting-induced hepatosteatosis. A full-dosage of p53 and an intact RP-Mdm2-p53 pathway are required for the induction of malonyl coA decarboxylase (MCD), a critical regulator of fatty acid oxidation. Thus, the RP-Mdm2-p53 pathway functions as a key regulator of hepatic lipid homeostasis in response to nutrient deprivation stress, a function that has implications in organismal survival and tumor suppression

    Fecal microbiome change in patients with ulcerative colitis after fecal microbiota transplantation

    Get PDF
    Intestinal human microbiota is a dynamic system that is under the pressures of its host organism and external factors. Microbiota disruption caused by these factors can lead to severe diseases including inflammatory and oncological diseases of the gastrointestinal tract. One of the possible approaches in managing the intestinal microbiota is fecal microbiota transplantation (FT) – transfer of the microbiota from the stool of a healthy donor to the intestinal tract of a recipient patient. Currently, this procedure is recognized as an efficacious method to normalize the intestinal microbiota mainly in inflammatory diseases of the gastrointestinal tract. In Russia, pilot studies of the effectiveness of FT in patients with ulcerative colitis have been conducted for several years, and these studies were started in Novosibirsk. The aim of this study was to assess the change of intestinal microbiome in 20 patients with ulcerative colitis after a single FT procedure. The main method is a comparative analysis of 16S ribosomal RNA sequence libraries constructed using fecal samples obtained from patients with ulcerative colitis before and after FT and sequenced on the Illumina MiSeq platform. The obtained results showed that FT led to an increase in average biodiversity in samples after FT compared to samples before FT; however, the difference was not significant. In the samples studied, the proportion of Firmicutes sequences, the major gastrointestinal microbiota of healthy people, was decreased (~32 % vs. &gt;70 %), while the proportion of Proteobacteria sequences was increased (&gt;9 % vs. &lt;5 %). In some samples collected before FT, sequences of pathogenic Firmicutes and Proteobacteria were detected, including Acinetobacter spp., Enterococcusspp., Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Stenotrophomonas maltophylia, Streptococcusspp. In most cases, the proportion of such sequences after FT substantially decreased in appropriate samples. The exception was the Clostridiumdifficilesequences, which accounted for &lt;0.5 % of the sequences in samples from almost half of the patients and after FT, the share of such C. difficilesequences was significantly reduced only in samples from three patients. It should be noted that the proportion of Lactobacillusspp. increased ten-fold and their species composition significantly expanded. According to the obtained results, a preliminary conclusion can be made that even a single FT procedure can lead to an increase in the biodiversity of the gastrointestinal microbiota in patients and to the optimization of the taxonomic composition of the microbiota

    MOLECULAR GENETIC ANALYSIS OF INFECTION AGENTS OF FARM ANIMALS ANAPLASMOSIS ON THE TERRITORY OF WESTERN AND EASTERN SIBERIA

    Get PDF
    A total of 452 blood samples of cattle, sheep and goat collected in different regions of Altai Republic, Altai region, Novosibirsk and Irkutsk regions were examined on the presence of Anaplasma DNA using nested PCR with subsequent sequencing of PCR fragments. Anaplasma DNA was found in all examined blood samples of goat, 75.2 % samples of sheep, and 49.3 % samples of cattle. A molecular genetic analysis has demonstrated that intraerythrocytic Anaplasma ovis circulates in goat and sheep blood, while an intraerythrocytic Anaplasma sp. Omsk and a new intraerythrocytic Anaplasma sp. Sibl22, which cannot be attributed to any known species, circulate in cattle blood. In addition to intraerythrocytic Anaplasma, DNA of monocytic Anaplasma bovis was found in one blood sample of cattle
    corecore