8,255 research outputs found
Macroscopic Quantum Tunneling and Dissipation of Domain Wall in Ferromagnetic Metals
The depinning of a domain wall in ferromagentic metal via macroscopic quantum
tunneling is studied based on the Hubbard model. The dynamics of the
magnetization verctor is shown to be governed by an effective action of
Heisenberg model with a term non-local in time that describes the dissipation
due to the conduction electron. Due to the existence of the Fermi surface there
exists Ohmic dissipation even at zero temperature, which is crucially different
from the case of the insulator. Taking into account the effect of pinning and
the external magnetic field the action is rewritten in terms of a collective
coordinate, the position of the wall, . The tunneling rate for is
calculated by use of the instanton method. It is found that the reduction of
the tunneling rate due to the dissipation is very large for a thin domain wall
with thickness of a few times the lattice spacing, but is negligible for a
thick domain wall. Dissipation due to eddy current is shown to be negligible
for a wall of mesoscopic size.Comment: of pages 26, to appear in "Quantum Tunneling of Magnetization, ed. B.
Barbara and L. Gunther (Kluwer Academic Pub.), Figures available by FAX
(81-48-462-4649
On the Observability of Meso- and Macro-scopic Quantum Coherence of Domain Walls in Magnetic Insulators
Results are presented of a numerical calculation of the tunneling gap for a
domain wall moving in the double well potential of a pair of voids in a
magnetic insulator. Both symmetric and asymmetric double well potentials are
considered. It is found that, even in the absence of dissipation, the prospects
for observing quantum coherence on a meso- or macro-scopic scale appears
unlikely.Comment: 15 pages, Plain LaTex, UBC TP-93-1
Seasonal variation in hospital encounters with hypoglycaemia and hyperglycaemia
Aim To assess whether rates of hospital encounters with hypoglycaemia and hyperglycaemia display seasonal variation.
Methods Time series analyses of the monthly rates of hospital encounters (emergency room visits or inpatient admissions) with hypoglycaemia and hyperglycaemia from 2003 to 2012 using linked healthcare databases in Ontario, Canada.
Results Over the study period, there were 129 887 hypoglycaemia and 79 773 hyperglycaemia encounters. The characteristics of people at the time of their encounters were similar across the seasons in 2008 (median age 68 years for hypoglycaemia encounters and 53 years for hyperglycaemia encounters; 50% female; 90% with diabetes). We observed moderate seasonality in both types of encounters (R2 autoregression coefficient 0.58 for hypoglycaemia; 0.59 for hyperglycaemia). The rate of hypoglycaemia encounters appeared to peak between April and June, when on average, there was an additional 49 encounters per month (0.36 encounters per 100 000 persons per month) compared with the other calendar months (5% increase). The rate of hyperglycaemia encounters appeared to peak in January, when on average, there was an additional 69 encounters per month (0.50 encounters per 100 000 persons per month) compared with the other calendar months (11% increase).
Conclusions In our region, there is seasonal variation in the rate of hospital encounters with hypoglycaemia and hyperglycaemia. Our findings may help to highlight periods of vulnerability for people, may inform future epidemiological studies and may aid in the appropriate planning of healthcare resources
Estimating Depth from RGB and Sparse Sensing
We present a deep model that can accurately produce dense depth maps given an
RGB image with known depth at a very sparse set of pixels. The model works
simultaneously for both indoor/outdoor scenes and produces state-of-the-art
dense depth maps at nearly real-time speeds on both the NYUv2 and KITTI
datasets. We surpass the state-of-the-art for monocular depth estimation even
with depth values for only 1 out of every ~10000 image pixels, and we
outperform other sparse-to-dense depth methods at all sparsity levels. With
depth values for 1/256 of the image pixels, we achieve a mean absolute error of
less than 1% of actual depth on indoor scenes, comparable to the performance of
consumer-grade depth sensor hardware. Our experiments demonstrate that it would
indeed be possible to efficiently transform sparse depth measurements obtained
using e.g. lower-power depth sensors or SLAM systems into high-quality dense
depth maps.Comment: European Conference on Computer Vision (ECCV) 2018. Updated to
camera-ready version with additional experiment
QCDOC: A 10-teraflops scale computer for lattice QCD
The architecture of a new class of computers, optimized for lattice QCD
calculations, is described. An individual node is based on a single integrated
circuit containing a PowerPC 32-bit integer processor with a 1 Gflops 64-bit
IEEE floating point unit, 4 Mbyte of memory, 8 Gbit/sec nearest-neighbor
communications and additional control and diagnostic circuitry. The machine's
name, QCDOC, derives from ``QCD On a Chip''.Comment: Lattice 2000 (machines) 8 pages, 4 figure
Self-sustained oscillations in homogeneous shear flow
Generation of the large-scale coherent vortical structurs in homogeneous
shear flow couples dynamical processes of energy and enstrophy production. In
the large rate of strain limit, the simple estimates of the contributions to
the energy and enstrophy equations result in a dynamical system, describing
experimentally and numerically observed self-sustained non-linear oscillations
of energy and enstrophy. It is shown that the period of these oscilaltions is
independent upon the box size and the energy and enstrophy fluctuations are
strongly correlated.Comment: 10 pages 6 figure
Unleashing infinite momentum bandgap using resonant material systems
The realization of photonic time crystals is a major opportunity but also comes with significant challenges. The most pressing one, potentially, is the requirement for a substantial modulation strength in the material properties to create a noticeable momentum bandgap. Reaching that noticeable bandgap in optics is highly demanding with current, and possibly also future, material platforms since their modulation strength is small by tendency. Here we demonstrate that by introducing temporal variations in a resonant material, the momentum bandgap can be drastically expanded, potentially approaching infinity with modulation strengths in reach with known low-loss materials and realistic laser pump powers. The resonance can emerge from an intrinsic material resonance or a suitably spatially structured material supporting a structural resonance. Our concept is validated for resonant bulk media and optical metasurfaces and paves the way toward the first experimental realizations of photonic time crystals
Survival of patients with subglottic squamous cell carcinoma
Objective: Subglottic squamous cell carcinoma is a rare subsite of laryngeal cancer that behaves more aggressively and portends a worse prognosis. Using a population-based cancer registry, our objective was to report overall survival (OS) and laryngectomy-free survival (LFS) in patients diagnosed with subglottic squamous cell carcinoma, and to determine whether primary laryngectomy results in improved survival.
Methods: This retrospective population-based study considered patients with a new diagnosis of squamous cell carcinoma in the province of Ontario over a 15-year period (1995-2009). The Ontario Cancer Registry was examined for patients with the diagnosis of interest during the period of interest. Linked population-based databases were used to obtain patient demographics, comorbidity measures, staging, survival, and primary treatment with laryngectomy.
Results: Of 4927 patients identified to have laryngeal carcinoma, 89 were defined as having primary subglottic carcinoma (1.8%). In the subglottic cohort, 68 patients were men (76.4%), and mean age at diagnosis was 68 years (interquartile range: 60-77 years). The 5-year OS was 47.2%, and the 5-year LFS was 31.5%. In 13 patients (15%), the primary treatment was laryngectomy, which, compared with primary radiation, did not predict for improved OS. No differences in OS or LFS were observed during the 15-year study period (OS p=0.42, LFS p=0.83).
Conclusions: The survival of patients with subglottic carcinoma is poor and has remained stable over time (1995-2009). Compared with primary radiation, primary treatment with laryngectomy does not appear to improve OS
Anisotropic Homogeneous Turbulence: hierarchy and intermittency of scaling exponents in the anisotropic sectors
We present the first measurements of anisotropic statistical fluctuations in
perfectly homogeneous turbulent flows. We address both problems of
intermittency in anisotropic sectors and hierarchical ordering of anisotropies
on a direct numerical simulation of a three dimensional random Kolmogorov flow.
We achieved an homogeneous and anisotropic statistical ensemble by randomly
shifting the forcing phases. We observe high intermittency as a function of the
order of the velocity correlation within each fixed anisotropic sector and a
hierarchical organization of scaling exponents at fixed order of the velocity
correlation at changing the anisotropic sector.Comment: 6 pages, 3 eps figure
Lifetime Measurements in 120Xe
Lifetimes for the lowest three transitions in the nucleus Xe have
been measured using the Recoil Distance Technique. Our data indicate that the
lifetime for the transition is more than a factor of
two lower than the previously adopted value and is in keeping with more recent
measurements performed on this nucleus. The theoretical implications of this
discrepancy and the possible reason for the erroneous earlier results are
discussed. All measured lifetimes in Xe, as well as the systematics of
the lifetimes of the 2 states in Xe isotopes, are compared with
predictions of various models. The available data are best described by the
Fermion Dynamic Symmetry Model (FDSM).Comment: 9 pages, RevTeX, 3 figures with Postscript file available on request
at [email protected], [email protected]. Submitted to Phys.
Rev.
- …