300 research outputs found

    Nanosecond surface interferometry measurements on designed and commercial polymers

    Get PDF
    The effect of the ablation mechanism on surface morphology changes during an ablation process was studied by comparing three different polymers: a triazene polymer, a polyimide and poly(methylmethacrylate) (PMMA) with nanosecond surface interferometry. The triazene polymer, for which only indications for a photochemical ablation mechanism had been detected in previous studies, revealed no surface swelling, which could be attributed to a thermal ablation mechanism. For polyimide, a photothermal ablation mechanism is usually used to describe the ablation process at irradiation wavelengths ≥248nm. However, the interferometric measurements do not show any surface swelling, which would be a clear indication for a thermal ablation mechanism. A surface swelling was only detected for PMMA with irradiation at 248nm and fluences below the threshold of permanent surface modification. The detected phase shift, which is proportional to the change of the film thickness and the refractive index, can be explained by the opposite signs of the thermal expansion coefficient and the thermal refractive-index coefficien

    Rh-doped Ceria: Solar Organics From H2O, CO2 and Sunlight?

    Get PDF
    AbstractThe depleting supply of fossil fuels and rapidly increasing emissions of anthropogenic greenhouse gases demand sustainable solutions to the unfolding energy and environmental crises. One solution is to store concentrated solar energy in the form of chemical fuels via thermochemical cycles, which produce synthesis gas, a gas mixture of H2 and CO that is the precursor of liquid fuels in the Fischer-Tropsch (FT) processes. To date, research efforts in this field have been devoted exclusively to the improvement of synthesis gas production, and no reports are available in direct generation of organic fuels such as methane and ethanol from H2O and CO2 by solar thermochemical cycles. With the aim to generate higher grade fuels directly from H2O and CO2 via thermochemical processes, we incorporate FT catalysts into the ceria lattice. In this study, we have synthesized rhodium doped ceria by coprecipitation. X-ray powder diffraction (XRD) indicates that the as-synthesized Rh-doped ceria is single-phased. High temperature XRD reveals that the Rh-doped ceria sustains its fluorite structure even at elevated temperatures up to 1400˚C, indicating excellent structural stability highly desired for thermochemical cycles. The formation of oxygen vacancies in ceria due to the substitution of cerium by the lower valent rhodium cations is evidenced by Raman spectra. Rh-doped ceria exhibits an enhanced oxygen storage capacity (OSC) and superior activities in the conversion of H2 and CO2 into methane. These demonstrate great potential of Rh-doped ceria for the production of methane and other chemicals during the reoxidation in a thermochemical cycle, when H2O, instead of H2, is co-fed with CO2. In fact, evidence strongly indicates that the H2 produced from the splitting of H2O is partly consumed when both H2O and CO2 are used for the reoxidation of thermally reduced Rh-doped ceria. Therefore the formation of higher grade fuels seems highly likely

    Mass and kinetic energy distribution of the species generated bylaser ablation of La0.6Ca0.4MnO3

    Get PDF
    The mass distributions of the species generated by laser ablation from a La0.6Ca0.4MnO3 target using laser irradiation wavelengths of 193nm, 266nm and 308nm have been investigated with and without a synchronized gas pulse of N2O. The kinetic energies of the species are measured using an electrostatic deflection energy analyzer, while the mass distributions of the species were analyzed with a quadrupole mass filter. In vacuum (pressure 10−7mbar), the ablation plume consists of metal atoms and ions such as La, Ca, Mn, O, LaO, as well as multiatomic species, e.g. LaMnO+. The LaO+ diatomic species are by far the most intense diatomic species in the plume, while CaO and MnO are only detected in small amounts. The interaction of a reactive N2O gas pulse with the ablation plume leads to an increase in plume reactivity, which is desired when thin manganite films are grown, in order to incorporate the necessary amount of oxygen into the film. The N2O gas pulse appears to have a significant influence on the oxidation of the Mn species in the plume, and on the creation of negative ions, such as LaO−,O− and O 2

    Microstructure and electrical conductivity of YSZ thin films prepared by pulsed laser deposition

    Get PDF
    Yttria-stabilized zirconia (YSZ) is the most common solid electrolyte material used e.g. in ceramic fuel cells. Thin films of YSZ were deposited on c-cut sapphire single crystals by pulsed laser deposition using a KrF excimer laser focused on a polycrystalline 8 mol% Y2O3-stabilized ZrO2 target. Depending on the substrate temperature and the oxygen background pressure during deposition, different microstructures are obtained. XRD and high-resolution SEM revealed the formation of dense amorphous films at room temperature. At 600°C preferentially (111) oriented polycrystalline films consisting of densely agglomerated nm-sized grains of the cubic phase resulted. Grain size and surface roughness could be controlled by varying the oxygen background pressure. RBS and PIXE evidenced congruent transfer only for a low number of pulses, indicating a dynamical change of the target stoichiometry during laser irradiation. The in-plane ionic conductivity of the as-deposited crystalline films was comparable to bulk YSZ. The conductivity of initially amorphous YSZ passes a maximum during the crystallization process. However, the relative changes remain small, i.e. no significant enhancement of ionic conductivity related to the formation of a nanocrystalline microstructure is foun

    Changes in the etch rate of photosensitive polymers as a function of the pulse number

    Get PDF
    The ablation rates of a polyimide and a triazene polymer were studied gravimetrically by a quartz micro balance for 248-nm and 308-nm irradiation. Special care was taken to examine the dependence of the ablation rate at constant fluences for single pulses and the influence of consecutive pulses at the same position. A clear trend was observed in these measurements, i.e., that the mass loss after the first pulse is always different from values for the following pulses. This implies that it is very difficult to determine true ablation rates, which are the foundation of most ablation models. The differences of the mass loss between the first pulse and the following pulses is most probably due to carbonization of the material, resulting in varying ablation rates for the following pulses. The ablation rates are thus not a real material property but a superposition of the material ablation rates with the ablation rates of carbon and carbonized materia

    Photoemission Electron Microscopy as a tool for the investigation of optical near fields

    Full text link
    Photoemission electron microscopy was used to image the electrons photoemitted from specially tailored Ag nanoparticles deposited on a Si substrate (with its native oxide SiOx_{x}). Photoemission was induced by illumination with a Hg UV-lamp (photon energy cutoff ωUV=5.0\hbar\omega_{UV}=5.0 eV, wavelength λUV=250\lambda_{UV}=250 nm) and with a Ti:Sapphire femtosecond laser (ωl=3.1\hbar\omega_{l}=3.1 eV, λl=400\lambda_{l}=400 nm, pulse width below 200 fs), respectively. While homogeneous photoelectron emission from the metal is observed upon illumination at energies above the silver plasmon frequency, at lower photon energies the emission is localized at tips of the structure. This is interpreted as a signature of the local electrical field therefore providing a tool to map the optical near field with the resolution of emission electron microscopy.Comment: 10 pages, 4 figures; submitted to Physical Review Letter

    Influence of thermal diffusion on the laser ablation of thin polymer films

    Get PDF
    The laser ablation of a photosensitive triazene polymer was investigated with a ns XeCl excimer laser over a broad range of thicknesses (10-400nm). We found that the ablation threshold fluence increased dramatically with decreasing film thickness for films thinner than 50nm. Ablation on substrates with different thermal properties (sapphire, fused silica, PMMA) was investigated as well, and a clear influence of the substrate material was obtained. A mathematical model combining thermal diffusion and absorption effects was used to explain the experimental data. The model is in good agreement with the experimental data and shows that heat diffusion into the substrate plays a crucial role for the ablation process of very thin film

    One-step preparation of N-doped strontium titanate films by pulsed laser deposition

    Get PDF
    Perovskite-type oxynitrides exhibit promising electrical and optical properties and can possibly be used in the future as functional materials for electrical, photo-, and electrochemical applications. Continuous heterovalent substitution of oxygen ions by nitrogen ions allows tuning of the desired optical and/or electronic properties to the application specifications. In the present work deposition of SrTiO3:N films by pulsed reactive crossed beam laser ablation was studied in order to examine the influence of different deposition parameters on the film crystallinity and composition. The deposited films exhibit a perovskite-type crystal structure and reveals epitaxial growth on MgO(100) substrates. The unit cell parameters of the deposited SrTiO3:N films range within 3.911<a<3.9193.9\underline{11}<a<3.9\underline{19} , which is slightly larger than for polycrystalline SrTiO3 (a=3.905). The studied films reveal an oxygen content in the range of (2.70-2.98)±0.15. The relative N content (vs. O) can be tuned within the range of 1.0-3.0% by adjusting the deposition parameters. The N:O concentration ratio increases with increasing laser fluence and target-to-substrate distances, while the substrate temperature has a more complex influence on the nitrogen concentration. In the range of 580-650°C the [N]/[O] ratio increases while further heating results in a gradual decrease of the N conten

    The influence of lithium excess in the target on the properties andcompositions of Li1+ x Mn2O4− δ thin films prepared by PLD

    Get PDF
    Li-Mn-O thin films were deposited by pulsed laser deposition (PLD) onto stainless steel substrates using targets containing different concentrations of added Li2O. The influence of the target composition on the stoichiometry of the resulting thin films, the surface morphology and the electrochemical properties was studied. The application of the target with added 7.5 mol% Li2O results in an almost ideal lithium content, while all films were still oxygen deficient. The thin films were applied as electrodes in Li//Li1+x Mn2O4−δ cells (i.e. model cells for a rechargeable Li-ion battery) and characterized by cyclic voltammetry and galvanostatic charge/discharge experiments. The electrochemical measurements of the thin films confirmed that the thin films can serve as good model systems and that they show a sufficient cyclabilit

    RF-plasma assisted pulsed laser deposition of nitrogen-doped SrTiO3 thin films

    Get PDF
    Perovskite-type nitrogen substituted SrTiO3 thin films were deposited with a one-step process by RF-plasma assisted pulsed laser deposition from a SrTiO3 target using a N2 plasma, while deposition with a NH3 plasma yields films with almost no incorporated nitrogen. The deposited films exhibit a cubic perovskite-type crystal structure and reveal oriented growth on MgO(100) substrates. The unit cell parameters of the studied N-doped SrTiO3 films range within 3.905<a<3.918Å, which is slightly larger than for SrTiO3 (a=3.905Å). The nitrogen content in the deposited films varies from 0.2 to 0.7atom%. The amount of incorporated nitrogen in the films decreases with increasing RF-power, while the N2 flow rate does not have any pronounced influence on the N content. Nitrogen incorporation results in an increased optical absorption at 400-600nm, which is associated with N(2p) energy states that have a higher energy level than the valence band in strontium titanate. The optical band gap energies in the studied N-doped SrTiO3 films are at 3.2-3.3eV, which is very similar to that of pure strontium titanate (∼3.2eV). Films deposited with NH3 for the RF-plasma exhibit a lower degree of crystallinity and reveal almost no nitrogen incorporation into the crystal lattic
    corecore