517 research outputs found

    Tilted guides with friction in web conveyance systems

    Get PDF
    One challenge in designing web conveyance systems is controlling the displacement and vibration of the webs by guides without introducing instabilities or higher frequency disturbances from flange impacts. A solution to this problem is to use an actively or passively tilted guide or roller to steer the web. In this paper, a model of tilted guides with friction is developed, and it is shown that tilted guides produce a change in the web’s displacement, slope, bending moment, and shear force. When the web is conceptually unwrapped from its path, the normal force between the web and a tilted guide has a component that acts in the direction of the web’s lateral displacement, resulting in an equivalent force and bending moment acting on the web. The model is validated by measurements, and is compared to a previously existing model of guide tilt. In the configurations studied, the displacement of the web near the guide is linearly dependent on the tilt angle and tension and it increases exponentially with the web’s span length. When the guide’s tilt is oriented towards the center of the web’s wrap around the guide, the equivalent bending moment is zero in the absence of friction, and there is good agreement between the model developed in this paper and the previously existing model. However, when the center of the web’s wrap is oriented 90° away from the guide’s tilt orientation, the equivalent force is zero in the absence of friction, and measurements demonstrate the necessity of the equivalent bending moment

    "Buying" Corporate Social Responsibility: Organisational Identity Orientation as a Determinant of Practice Adoption

    Get PDF
    In this paper, we explore the empirical phenomenon of large multinational corporations (MNCs) acquiring socially oriented enterprises, such as the Unilever–Ben & Jerry’s, and the L`Oréal-The Body Shop takeovers. When focusing on these cases, we argue that variance in organisational identity orientations, as the dominant logic of managers within the acquiring organisations, determines whether MNCs consider the transaction not only in financial terms, but also decide to adopt “social technology” in the form of CSR-related organisational practices from the acquired unit. We argue that in turn based on a “match” with the organisational identity of the acquired unit, managers will opt to adopt CSR practices more fully or selectively, and in more substantial or symbolic ways. With these propositional arguments we not only aim to contribute to the literature on CSR adoption by MNCs, but we also set out to develop theory on the widespread but so far undocumented phenomenon of MNCs “buying CSR” by acquiring socially oriented enterprises

    Simulation of space-borne tsunami detection using GNSS-Reflectometry applied to tsunamis in the Indian Ocean

    Get PDF
    Within the German-Indonesian Tsunami Early Warning System project GITEWS (Rudloff et al., 2009), a feasibility study on a future tsunami detection system from space has been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative way of using reflected GNSS signals for remote sensing, e.g. sea surface altimetry. In contrast to conventional satellite radar altimetry, multiple height measurements within a wide field of view can be made simultaneously. With a dedicated Low Earth Orbit (LEO) constellation of satellites equipped with GNSS-R, densely spaced sea surface height measurements could be established to detect tsunamis. This simulation study compares the Walker and the meshed comb constellation with respect to their global reflection point distribution. The detection performance of various LEO constellation scenarios with GPS, GLONASS and Galileo as signal sources is investigated. The study concentrates on the detection performance for six historic tsunami events in the Indian Ocean generated by earthquakes of different magnitudes, as well as on different constellation types and orbit parameters. The GNSS-R carrier phase is compared with the PARIS or code altimetry approach. The study shows that Walker constellations have a much better reflection point distribution compared to the meshed comb constellation. Considering simulation assumptions and assuming technical feasibility it can be demonstrated that strong tsunamis with magnitudes (<i>M</i>) ≥8.5 can be detected with certainty from any orbit altitude within 15–25 min by a 48/8 or 81/9 Walker constellation if tsunami waves of 20 cm or higher can be detected by space-borne GNSS-R. The carrier phase approach outperforms the PARIS altimetry approach especially at low orbit altitudes and for a low number of LEO satellites

    Entanglement properties of optical coherent states under amplitude damping

    Full text link
    Through concurrence, we characterize the entanglement properties of optical coherent-state qubits subject to an amplitude damping channel. We investigate the distillation capabilities of known error correcting codes and obtain upper bounds on the entanglement depending on the non-orthogonality of the coherent states and the channel damping parameter. This work provides a first, full quantitative analysis of these photon-loss codes which are naturally reminiscent of the standard qubit codes against Pauli errors.Comment: 7 pages, 6 figures. Revised version with small corrections; main results remain unaltere

    An Investigation Into Using Magnetically Attached Piezoelectric Elements for Vibration Control

    Get PDF
    A novel vibration control method utilizing magnetically mounted piezoelectric elements is described. Piezoelectric elements are bonded to permanent magnets, termed here as control mounts, which are attached to the surface of a steel beam through their magnetic attraction. The magnetic-piezoelectric control mounts are an alternative to traditional epoxy attachment methods for piezoelectric elements which allows for easy in-the-field reconfiguration. In model and laboratory measurements, the beam is driven through base excitation and the resonant shunt technique is utilized to demonstrate the attenuation characteristics of two magnetic-piezoelectric control mounts. The coupled system is discretized using a Galerkin finite element model that incorporates the tangential and vertical contact stiffnesses of the beam-magnet interface. The vibration reduction provided by the control mounts using a single magnet are compared to those designed with a magnetic array that alternates the magnetic dipoles along the length of the mount. Even though each design uses the same magnet thickness, the alternating magnetic configuration\u27s interfacial contact stiffness is over 1.5 and 4 times larger in the tangential and vertical directions, respectively, than that of the single magnet, resulting in increased vibration reduction. Measured and simulated results show that the magnetic-piezoelectric control mounts reduced the beam\u27s tip velocity by as much as 3.0 dB and 3.1 dB, respectively. The design tradeoffs that occur when replacing the traditional epoxy layer with a magnet are also presented along with some methods that could improve the vibration reduction performance of the control mounts. This analysis shows that the control mounts attenuate significant vibration despite having an imperfect bond with the beam, thus providing a viable and adaptable alternative to traditional piezoelectric attachment methods
    corecore