1,652 research outputs found
A design study of hydrazine and biowaste resistojets
A generalized modeling program was adapted in BASIC on a personal computer to compare the performance of four types of biowaste resistojets and two types of hydrazine augmenters. Analyzed biowaste design types were: (1) an electrically conductive ceramic heater-exchanger of zirconia; (2) a truss heater of platinum in cross flow; (3) an immersed bicoiled tubular heater-exchanger; and (4) a nonexposed, refractory metal, radiant heater in a central cavity within a heat exchanger case. Concepts 2 and 3 are designed to have an efficient, stainless steel outer pressure case. The hydrazine design types are: (5) an immersed bicoil heater exchanger and (6) a nonexposed radiant heater now with a refractory metal case. The ceramic biowaste resistojet has the highest specific impulse growth potential at 2000 K of 192.5 (CO2) and 269 s (H2O). The bicoil produces the highest augmenter temperature of 1994 K for a 2073 K heater giving 317 s at .73 overall efficiency. Detailed temperature profiles of each of the designs are shown. The scaled layout drawings of each are presented with recommended materials and fabrication methods
Competition between pairing and ferromagnetic instabilities in ultracold Fermi gases near Feshbach resonances
We study the quench dynamics of a two-component ultracold Fermi gas from the
weak into the strong interaction regime, where the short time dynamics are
governed by the exponential growth rate of unstable collective modes. We obtain
an effective interaction that takes into account both Pauli blocking and the
energy dependence of the scattering amplitude near a Feshbach resonance. Using
this interaction we analyze the competing instabilities towards Stoner
ferromagnetism and pairing.Comment: 4+epsilon pages, 4 figure
Magnetic tight-binding and the iron-chromium enthalpy anomaly
We describe a self consistent magnetic tight-binding theory based in an
expansion of the Hohenberg-Kohn density functional to second order, about a non
spin polarised reference density. We show how a first order expansion about a
density having a trial input magnetic moment leads to the Stoner--Slater rigid
band model. We employ a simple set of tight-binding parameters that accurately
describes electronic structure and energetics, and show these to be
transferable between first row transition metals and their alloys. We make a
number of calculations of the electronic structure of dilute Cr impurities in
Fe which we compare with results using the local spin density approximation.
The rigid band model provides a powerful means for interpreting complex
magnetic configurations in alloys; using this approach we are able to advance a
simple and readily understood explanation for the observed anomaly in the
enthalpy of mixing.Comment: Submitted to Phys Rev
Landau-Zener-Stueckelberg effect in a model of interacting tunneling systems
The Landau-Zener-Stueckelberg (LZS) effect in a model system of interacting
tunneling particles is studied numerically and analytically. Each of N
tunneling particles interacts with each of the others with the same coupling J.
This problem maps onto that of the LZS effect for a large spin S=N/2. The
mean-field limit N=>\infty corresponds to the classical limit S=>\infty for the
effective spin. It is shown that the ferromagnetic coupling J>0 tends to
suppress the LZS transitions. For N=>\infty there is a critical value of J
above which the staying probability P does not go to zero in the slow sweep
limit, unlike the standard LZS effect. In the same limit for J>0 LZS
transitions are boosted and P=0 for a set of finite values of the sweep rate.
Various limiting cases such as strong and weak interaction, slow and fast sweep
are considered analytically. It is shown that the mean-field approach works
well for arbitrary N if the interaction J is weak.Comment: 13 PR pages, 15 Fig
Spin Josephson effect in ferromagnet/ferromagnet tunnel junctions
We consider the tunnel spin current between two ferromagnetic metals from a
perspective similar to the one used in superconductor/superconductor tunnel
junctions. We use fundamental arguments to derive a Josephson-like spin tunnel
current . Here the phases are
associated with the planar contribution to the magnetization,
. The crucial step in our
analysis is the fact that the -component of the spin is canonically
conjugate to the phase of the planar contribution: . This is
analogous to the commutation relation in superconductors, where
is the phase associated to the superconducting order parameter and
is the Cooper pair number operator. We briefly discuss the experimental
consequences of our theoretical analysis.Comment: LaTex, seven pages, no figures; version to appear in Europhys. Lett.;
in order to make room for a more extended microscopic analysis, the
phenomenological discussion contained in v2 was remove
Spin Susceptibility of an Ultra-Low Density Two Dimensional Electron System
We determine the spin susceptibility in a two dimensional electron system in
GaAs/AlGaAs over a wide range of low densities from 2cm to
4cm. Our data can be fitted to an equation that describes
the density dependence as well as the polarization dependence of the spin
susceptibility. It can account for the anomalous g-factors reported recently in
GaAs electron and hole systems. The paramagnetic spin susceptibility increases
with decreasing density as expected from theoretical calculations.Comment: 5 pages, 2 eps figures, to appear in PR
Integral Relaxation Time of Single-Domain Ferromagnetic Particles
The integral relaxation time \tau_{int} of thermoactivating noninteracting
single-domain ferromagnetic particles is calculated analytically in the
geometry with a magnetic field H applied parallel to the easy axis. It is shown
that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the
Fokker-Planck equation \Lambda_1 at low temperatures, starting from some
critical value of H, is the consequence of the depletion of the upper potential
well. In these conditions the integral relaxation time consists of two
competing contributions corresponding to the overbarrier and intrawell
relaxation processes.Comment: 8 pages, 3 figure
Thermally activated escape rates of uniaxial spin systems with transverse field
Classical escape rates of uniaxial spin systems are characterized by a
prefactor differing from and much smaller than that of the particle problem,
since the maximum of the spin energy is attained everywhere on the line of
constant latitude: theta=const, 0 =< phi =< 2*pi. If a transverse field is
applied, a saddle point of the energy is formed, and high, moderate, and low
damping regimes (similar to those for particles) appear. Here we present the
first analytical and numerical study of crossovers between the uniaxial and
other regimes for spin systems. It is shown that there is one HD-Uniaxial
crossover, whereas at low damping the uniaxial and LD regimes are separated by
two crossovers.Comment: 4 PR pages, 3 figures, final published versio
- …