15,310 research outputs found

    Generation of spin-polarized currents via cross-relaxation with dynamically pumped paramagnetic impurities

    Get PDF
    Key to future spintronics and spin-based information processing technologies is the generation, manipulation, and detection of spin polarization in a solid state platform. Here, we theoretically explore an alternative route to spin injection via the use of dynamically polarized nitrogen-vacancy (NV) centers in diamond. We focus on the geometry where carriers and NV centers are confined to proximate, parallel layers and use a 'trap-and-release' model to calculate the spin cross-relaxation probabilities between the charge carriers and neighboring NV centers. We identify near-unity regimes of carrier polarization depending on the NV spin state, applied magnetic field, and carrier g-factor. In particular, we find that unlike holes, electron spins are distinctively robust against spin-lattice relaxation by other, unpolarized paramagnetic centers. Further, the polarization process is only weakly dependent on the carrier hopping dynamics, which makes this approach potentially applicable over a broad range of temperatures.C.A.M. acknowledges support from the National Science Foundation through Grant No. NSF-1314205. M.W.D. acknowledges support from the Australian Research Council through Grant No. DP120102232

    Photolysis of Diborane at 1849 Å

    Get PDF
    The photolysis of diborane at 1849 Å has been studied in a specially constructed, internal‐type mercury‐vapor lamp. The products have been found to be H_2, B_(4)H_(10), B_(5)H_(11), and, at low pressures, a —BH— polymer. Reaction orders at 4°C have been obtained from linear plots of reaction products vs time for a range of diborane pressures from 0.08 to 80 cm, and at two light intensities. Linear relations between products and time existed only at very low conversions (∼1%), which required the development of a low‐temperature separation method for manipulating and analyzing the traces of B_(4)H_(10) and B_(5)H_(11). Because of the reactivity of these compounds, a detailed conditioning procedure was employed for the glass system. A mechanism consistant with the kinetic data and suggested by the kinetic results of thermal and photosensitized decomposition of diborane is postulated: the B_(5)H_(11) is assumed to be formed from a dissociation of B_(2)H_6 into BH_3's, the latter arising from an excited molecule. The B_(4)H_(10) and polymer are assumed to be formed from a dissociation of B_(2)H_6 into B_(2)H_5 and H, followed by radical recombination. There is a significant difference between the kinetics of thermal and photochemical B_(5)H_(11) formation, a result which may be due to the considerable energy excess of the 1849 quantum over that needed for dissociation (∼125‐kcal excess). These kinetic results raise a number of interesting questions, questions which can only be resolved through further investigations of effects due to light intensity, added inert gases, and temperature. The primary quantum yield of the step forming B_(2)H_5 and H is about 10 times higher than that of the one forming BH_3's. A rather rough estimate suggests that the former is of the order of magnitude of unity

    Uniform semiclassical theory of avoided crossings

    Get PDF
    A voided crossings influence spectra and intramolecular redistribution of energy. A semiclassical theory of these avoided crossings shows that when primitive semiclassical eigenvalues are plotted vs a parameter in the Hamiltonian they cross instead of avoiding each other. The trajectories for each are connected by a classically forbidden path. To obtain the avoided crossing behavior, a uniform semiclassical theory of avoided crossings is presented in this article for the case where that behavior is generated by a classical resonance. A low order perturbation theory expression is used as the basis for a functional form for the treatment. The parameters in the expression are evaluated from canonical invariants (phase integrals) obtained from classical trajectory data. The results are compared with quantum mechanical results for the splitting, and reasonable agreement is obtained. Other advantages of the uniform method are described

    Interlacing Families IV: Bipartite Ramanujan Graphs of All Sizes

    Full text link
    We prove that there exist bipartite Ramanujan graphs of every degree and every number of vertices. The proof is based on analyzing the expected characteristic polynomial of a union of random perfect matchings, and involves three ingredients: (1) a formula for the expected characteristic polynomial of the sum of a regular graph with a random permutation of another regular graph, (2) a proof that this expected polynomial is real rooted and that the family of polynomials considered in this sum is an interlacing family, and (3) strong bounds on the roots of the expected characteristic polynomial of a union of random perfect matchings, established using the framework of finite free convolutions we recently introduced

    Initial value representation for the SU(n) semiclassical propagator

    Full text link
    The semiclassical propagator in the representation of SU(n) coherent states is characterized by isolated classical trajectories subjected to boundary conditions in a doubled phase space. In this paper we recast this expression in terms of an integral over a set of initial-valued trajectories. These trajectories are monitored by a filter that collects only the appropriate contributions to the semiclassical approximation. This framework is suitable for the study of bosonic dynamics in n modes with fixed total number of particles. We exemplify the method for a Bose-Einstein condensate trapped in a triple-well potential, providing a detailed discussion on the accuracy and efficiency of the procedure.Comment: 24 pages, 6 figure

    Coulomb Oscillations in Antidots in the Integer and Fractional Quantum Hall Regimes

    Full text link
    We report measurements of resistance oscillations in micron-scale antidots in both the integer and fractional quantum Hall regimes. In the integer regime, we conclude that oscillations are of the Coulomb type from the scaling of magnetic field period with the number of edges bound to the antidot. Based on both gate-voltage and field periods, we find at filling factor {\nu} = 2 a tunneling charge of e and two charged edges. Generalizing this picture to the fractional regime, we find (again, based on field and gate-voltage periods) at {\nu} = 2/3 a tunneling charge of (2/3)e and a single charged edge.Comment: related papers at http://marcuslab.harvard.ed
    corecore