173 research outputs found

    Three Dimensional Simulation of Gamma Ray Emission from Asymmetric Supernovae and Hypernovae

    Full text link
    Hard X- and γ\gamma-ray spectra and light curves resulting from radioactive decays are computed for aspherical (jet-like) and energetic supernova models (representing a prototypical hypernova SN 1998bw), using a 3D energy- and time-dependent Monte Carlo scheme. The emission is characterized by (1) early emergence of high energy emission, (2) large line-to-continuum ratio, and (3) large cut-off energy by photoelectric absorptions in hard X-ray energies. These three properties are not sensitively dependent on the observer's direction. On the other hand, fluxes and line profiles depend sensitively on the observer's direction, showing larger luminosity and larger degree of blueshift for an observer closer to the polar (zz) direction. Strategies to derive the degree of asphericity and the observer's direction from (future) observations are suggested on the basis of these features, and an estimate on detectability of the high energy emission by the {\it INTEGRAL} and future observatories is presented. Also presented is examination on applicability of a gray effective γ\gamma-ray opacity for computing the energy deposition rate in the aspherical SN ejecta. The 3D detailed computations show that the effective γ\gamma-ray opacity κγ∼0.025−0.027\kappa_{\gamma} \sim 0.025 - 0.027 cm2^{2} g−1^{-1} reproduces the detailed energy-dependent transport for both spherical and aspherical (jet-like) geometry.Comment: 24 pages, 13 figures. Figure 7 added in the accepted version. ApJ, 644 (01 June 2006 issue), in press. Resolution of figures lower than the published versio

    Hard X-Rays From Supernova 1993J

    Get PDF
    The OSSE experiment on the Compton Observatory observed SN 1993J during three intervals, approximately 9--15, 23--36, and 93--121 days after outburst. There is evidence for continuum emission below 200 keV in the first two of these periods. Power-law fits yield intensities at 100 keV of (1.82+/-0.39)*E(-3) photons cm(-2) s(-1) MeV(-1) and (0.89+/-0.35)*E(-3) photons cm(-2) s(-1) MeV(-1) , and photon indices of -2.3+/-0.5 and -2.2+/-0.9, respectively. There is no evidence for any emission in the longer, more sensitive, third observation. These continua are too bright and too steep to be entirely due to Comptonized gamma-rays from radioactive (56) Ni and (56) Co alone. A thermal bremsstrahlung spectrum, for example, also adequately describes the OSSE data, with kT =~ 75 keV. These continua extrapolate well above nearly contemporaneous measurements at lower energies. Instead, a power-law of fixed photon index -1.2 fit to the first OSSE observation extrapolates approximately to the total luminosity measured by ASCA (Tanaka IAU Circ. 5753) from 1--10 keV, one day earlier. For a thermal spectrum a higher temperature, near 200 keV, can also fit both data sets---but only marginally. This emission cannot be unambiguously attributed to SN 1993J. Because of the large OSSE field of view, SN 1993J cannot be separated from other sources such as the nucleus of M81 or even M82. However, OSSE did observe this region twice earlier, 597 and 443 days before SN 1993J and no continuum emission was detected at either time. The apparent decline of the emission does seem to correlate well with those of SN 1993J as seen by ASCA and ROSAT. No evidence for line emission is seen in any observation. This work is supported by NASA DPR S-10987C

    Operation and performance of the OSSE instrument

    Get PDF
    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Arthur Holly Compton Gamma Ray Observatory is described. An overview of the operation and control of the instrument is given, together with a discussion of typical observing strategies used with OSSE and basic data types produced by the instrument. Some performance measures for the instrument are presented that were obtained from pre-launch and in-flight data. These include observing statistics, continuum and line sensitivity, and detector effective area and gain stability

    The Oriented Scintillation Spectrometer Experiment - Instrument Description

    Get PDF
    The Oriented Scintillation Spectrometer Experiment on the Arthur Holly Compton Gamma Ray Observatory satellite uses four actively shielded NaI (Tl)-CsI(Na) phoswich detectors to provide gamma-ray line and continuum detection capability in the 0.05-10 MeV energy range. The instrument includes secondary capabilities for gamma-ray and neutron detection between 10 and 250 MeV. The detectors have 3.8 deg x 11.04 deg (FWHM) fields of view defined by tungsten collimators. Each detector has an independent, single-axis orientation system which permits offset pointing from the spacecraft Z-axis for background measurements and multitarget observations. The instrument, and its calibration and performance, are described

    Universal subgap optical conductivity in quasi-one-dimensional Peierls systems

    Get PDF
    Quasi-one-dimensional Peierls systems with quantum and thermal lattice fluctuations can be modeled by a Dirac-type equation with a Gaussian-correlated off-diagonal disorder. A powerful new method gives the exact disorder-averaged Green function used to compute the optical conductivity. The strong subgap tail of the conductivity has a universal scaling form. The frequency and temperature dependence of the calculated spectrum agrees with experiments on KCP(Br) and trans-polyacetylene.Comment: 11 pages (+ 3 figures), LATEX (REVTEX 3.0

    Initial Results from OSSE on the Compton Observatory

    Get PDF
    The Oriented Scintillation Spectrometer Experiment (OSSE) was launched on NASA\u27s Compton Observatory on 1991 April 5. OSSE uses large area scintillation detectors to undertake gamma-ray line and continuum observations in the 0.05 - 10 MeV energy range. During the first months of the mission, OSSE has obtained observations on a number of high priority sources including AGNs, SN1991T, the galactic center region, and several discrete galactic sources. The capabilities and performance of OSSE are discussed and initial results for several of the early observations are presented

    CGRO/OSSE Observations of the Cassiopeia A Supernova Remnant

    Get PDF
    Cas A, the youngest known supernova remnant in the Galaxy and a strong radio and Xray source, was observed by OSSE July 16 - August 6, 1992. Its close distance (¸ 3 kpc) and its young age (¸ 300 yrs) make Cas A the best candidate among known supernova remnants for detecting 44 Ti fl-ray lines. We find no evidence of emission at 67.9 keV, 78.4 keV, or 1.157 MeV, the three strongest 44 Ti decay lines. From simultaneous fits to the three lines our 99% confidence upper limit to the flux in each line is 5.5Theta10 Gamma5 fl cm Gamma2 s Gamma1 . We also report upper limits for the 4.44 MeV 12 C nuclear deexcitation line, which could be produced by interactions of accelerated particles in the supernova remnant, and for the hard X-ray continuum

    Gamma-ray observations of NGC 253 and M82 with OSSE

    Get PDF
    Gamma-ray observations of the nearby starburst galaxies NGC 253 and M82 over the energy range (0.05-10) MeV have been obtained with the Oriented Scintillation Spectrometer Experiment (OSSE) spectrometer on the Compton Gamma-Ray Observatory (CGRO). The priority of these galaxies as OSSE targets had been established on the grounds that the average supernova rate may be high in starbursts as indicated by infrared and radio observations, and at distances of approximately 3 Mpc a significant chance of supernova gamm-ray line detection exists. NGC 253 was detected in continuum emission up to 165 keV with a total significance of 4.4 sigma and an estimated luminosity of 3 x 1040 ergs/s. The spectrum is best fit by a power law of photon index approximately 2.5. We consider the possible contribution of different emission mechanisms, including inverse Compton scattering, bremsstrahlung, discrete sources, and Type Ia/Ib supernova continuum to the measured flux. No significant continuum flux was observed from M82. A search for the gamma-ray line from the decay of the most abundant radioactive element produced in supernovae (Ni-56 yields Co-56 yields Fe-56) yielded no significant detection: the 3 sigma upper limits to the line fluxes at 0.158, 0.812, 0.847, and 1.238 MeV for both galaxies are obtained

    The Concordance Cosmic Star Formation Rate: Implications from and for the Supernova Neutrino and Gamma Ray Backgrounds

    Full text link
    We constrain the Cosmic Star Formation Rate (CSFR) by requiring that massive stars produce the observed UV, optical, and IR light while at the same time not overproduce the Diffuse Supernova Neutrino Background as bounded by Super-Kamiokande. With the massive star component so constrained we then show that a reasonable choice of stellar Initial Mass Function and other parameters results in SNIa rates and iron yields in good agreement with data. In this way we define a `concordance' CSFR that predicts the optical SNII rate and the SNIa contribution to the MeV Cosmic Gamma-Ray Background. The CSFR constrained to reproduce these and other proxies of intermediate and massive star formation is more clearly delineated than if it were measured by any one technique and has the following testable consequences: (1) SNIa contribute only a small fraction of the MeV Cosmic Gamma-Ray Background, (2) massive star core-collapse is nearly always accompanied by a successful optical SNII, and (3) the Diffuse Supernova Neutrino Background is tantalizingly close to detectability.Comment: Improved discussion. Version accepted for publication in JCA

    OSSE observations of the Crab pulsar

    Get PDF
    Preliminary results are presented of the Compton Gamma Ray Observatory Oriented Scintillation Spectrometer Experiment (OSSE) observations of the Crab pulsar. The pulsar energy spectra and light curves are in general agreement with previous observations, validating the OSSE pulsar data acquisition modes and data analysis algorithms. The data suggest that the spectrum of the pulsar varies throughout the light curve. The 'interpulse' region has a slightly flatter spectrum in the approx. 60 to 250 keV region and a slightly steeper spectrum at higher energies than the two main pulses. No evidence was found for any lines in the spectra with a typical sensitivity of about 10(exp -4) photons/sq cm/s
    • …
    corecore