1,613 research outputs found

    Design of strapdown gyroscopes for a dynamic environment Semiannual report, Dec. 1967 - May 1968

    Get PDF
    Systems analysis, design, and operating characteristics of strapdown gyroscopes for dynamic environmen

    Thermodynamics, Structure, and Dynamics of Water Confined between Hydrophobic Plates

    Full text link
    We perform molecular dynamics simulations of 512 water-like molecules that interact via the TIP5P potential and are confined between two smooth hydrophobic plates that are separated by 1.10 nm. We find that the anomalous thermodynamic properties of water are shifted to lower temperatures relative to the bulk by 40\approx 40 K. The dynamics and structure of the confined water resemble bulk water at higher temperatures, consistent with the shift of thermodynamic anomalies to lower temperature. Due to this TT shift, our confined water simulations (down to T=220T = 220 K) do not reach sufficiently low temperature to observe a liquid-liquid phase transition found for bulk water at T215T\approx 215 K using the TIP5P potential. We find that the different crystalline structures that can form for two different separations of the plates, 0.7 nm and 1.10 nm, have no counterparts in the bulk system, and discuss the relevance to experiments on confined water.Comment: 31 pages, 14 figure

    Lattice model of gas condensation within nanopores

    Full text link
    We explore the thermodynamic behavior of gases adsorbed within a nanopore. The theoretical description employs a simple lattice gas model, with two species of site, expected to describe various regimes of adsorption and condensation behavior. The model includes four hypothetical phases: a cylindrical shell phase (S), in which the sites close to the cylindrical wall are occupied, an axial phase (A), in which sites along the cylinder's axis are occupied, a full phase (F), in which all sites are occupied, and an empty phase (E). We obtain exact results at T=0 for the phase behavior, which is a function of the interactions present in any specific problem. We obtain the corresponding results at finite T from mean field theory. Finally, we examine the model's predicted phase behavior of some real gases adsorbed in nanopores

    Adsorption in non interconnected pores open at one or at both ends: A reconsideration of the origin of the hysteresis phenomenon

    Get PDF
    We report on an experimental study of adsorption isotherme of nitrogen onto porous silicon with non interconnected pores open at one or at both ends in order to check for the first time the old (1938) but always current idea based on Cohan's description which suggests that the adsorption of gaz should occur reversibly in the first case and irreversibly in the second one. Hysteresis loops, the shape of which is usually associated to interconnections in porous media, are observed whether the pores are open at one or at both ends in contradiction with Cohan's model.Comment: 5 pages, 4 EPS figure

    Lattice-gas Monte Carlo study of adsorption in pores

    Get PDF
    A lattice gas model of adsorption inside cylindrical pores is evaluated with Monte Carlo simulations. The model incorporates two kinds of site: (a line of) ``axial'' sites and surrounding ``cylindrical shell'' sites, in ratio 1:7. The adsorption isotherms are calculated in either the grand canonical or canonical ensembles. At low temperature, there occur quasi-transitions that would be genuine thermodynamic transitions in mean-field theory. Comparison between the exact and mean-field theory results for the heat capacity and adsorption isotherms are provided

    Mathematical Constraint on Functions with Continuous Second Partial Derivatives

    Full text link
    A new integral identity for functions with continuous second partial derivatives is derived. It is shown that the value of any function f(r,t) at position r and time t is completely determined by its previous values at all other locations r' and retarded times t'<t, provided that the function vanishes at infinity and has continuous second partial derivatives. Functions of this kind occur in many areas of physics and it seems somewhat surprising that they are constrained in this way.Comment: 10 pages, 6 figure

    Searching for the MSW Enhancement

    Full text link
    We point out that the length scale associated with the MSW effect is the radius of the Earth. Therefore to verify matter enhancement of neutrino oscillations, it will be necessary to study neutrinos passing through the Earth. For the parameters of MSW solutions to the solar neutrino problem, the only detectable effects occur in a narrow band of energies from 5 to 10 MeV. We propose that serious consideration be given to mounting an experiment at a location within 9.5 degrees of the equator.Comment: 10 pages, RevTe
    corecore