55 research outputs found

    Rigorous formulation of oblique incidence scattering from dispersive media

    Full text link
    We formulate a finite-difference time-domain (FDTD) approach to simulate electromagnetic wave scattering from scatterers embedded in layered dielectric or dispersive media. At the heart of our approach is a derivation of an equivalent one-dimensional wave propagation equation for dispersive media characterized by a linear sum of Debye-, Drude- and Lorentz-type poles. The derivation is followed by a detailed discussion of the simulation setup and numerical issues. The developed methodology is tested by comparison with analytical reflection and transmission coefficients for scattering from a slab, illustrating good convergence behavior. The case of scattering from a sub-wavelength slit in a dispersive thin film is explored to demonstrate the applicability of our formulation to time- and incident angle-dependent analysis of surface waves generated by an obliquely incident plane wave.Comment: 35 pages, 8 figures, 4 table

    Radio Astronomy

    Get PDF
    Contains reports on five research projects.National Aeronautics and Space Administration (Grant NsG-419)Joint Services Electronics Program (Contract DA36-039-AMC-03200(E)

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings

    Introduction to the special issue on medical application and biological effects of RF/microwaves

    No full text

    Computer analysis of E-plane resonance isolators

    No full text

    Applications of RF/microwaves in medicine

    No full text
    Medical applications of RF/microwaves are highlighted in this paper. The emphasis is placed on newer emerging diagnostic and therapeutic applications, such as microwave breast cancer detection, and treatment with localized high power used in ablation of the heart, and liver, benign prostate hypertrophy, angioplasty, and others. A very brief outline of biological effects of RF/microwaves and associated issues is given as background to the applications

    Mini-Special Issue on RF/Microwave Applications in Medicine

    No full text

    Special issue on medical application and biological effects of RF/microwaves

    No full text
    • 

    corecore