51 research outputs found

    Indian Jujuba Seed Powder as an Eco-Friendly and a Low-Cost Biosorbent for Removal of Acid Blue 25 from Aqueous Solution

    Get PDF
    Indian jujuba seed powder (IJSP) has been investigated as a low-cost and an eco-friendly biosorbent, prepared for the removal of Acid Blue 25 (AB25) from aqueous solution. The prepared biomaterial was characterized by using FTIR and scanning electron microscopic studies. The effect of operation variables, such as IJSP dosage, contact time, concentration, pH, and temperature on the removal of AB25 was investigated, using batch biosorption technique. Removal efficiency increased with increase of IJSP dosage but decreased with increase of temperature. The equilibrium data were analyzed by the Langmuir and the Freundlich isotherm models. The data fitted well with the Langmuir model with a maximum biosorption capacity of 54.95 mg g−1. The pseudo-second-order kinetics was the best for the biosorption of AB25 by IJSP, with good correlation. Thermodynamic parameters such as standard free energy change (ΔG0), standard enthalpy changes (ΔH0), and standard entropy changes (ΔS0) were analyzed. The removal of AB25 from aqueous solution by IJSP was a spontaneous and exothermic adsorption process. The results suggest that IJSP is a potential low-cost and an eco-friendly biosorbent for the AB25 removal from synthetic AB25 wastewater

    Effect of chemicals treatment and fiber loading on mechanical properties of borassus (Toddy palm) fiber/epoxy composites

    Get PDF
    Abstract: The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber reinforced epoxy composites. Composites were prepared by hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH), and alkali combined with silane (3- aminopropyltriethoxysilane) treatments on the fibers surface were carried out. Examinations through Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made by chemically modified and untreated Borassus fibers were studied using a Universal Testing Machine (UTM). Based on the experimental results, it was found that the tensile properties of the Borassus reinforced epoxy composites were significantly improved, as compared with the neat epoxy. It was also found that the fiber treated with combination of alkali and silane exhibited superior mechanical properties as compared with alkali and untreated fiber composites. The nature of fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites

    Properties of cellulose/Thespesia Lampas short fibers bio-composite films

    Get PDF
    Abstract: Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia Lampas plant as reinforcement, the green composite films were prepared. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content

    Extraction and characterization of novel lignocellulosic fibers from Thespesia lampas plant

    Get PDF
    In this work, the lignocellulosic fibers from the plant Thespesia lampas were extracted and investigated in detail. The prime objective of this work was to study the effect of alkali treatment on the chemical composition, tensile properties, morphological and structural changes, and thermal degradation of Thespesia lampas fibers. Chemical analysis, FT-IR, and 13C CP-MAS NMR spectroscopic studies indicated lowering of amorphous hemicellulose content on alkali treatment. Wide-angle X-ray diffraction studies indicated increase in crystallinity of the fibers on alkali treatment. The tensile strength and modulus of the fibers and thermal stability increased on alkali treatment. Scanning electron micrographs revealed roughening of the surface of the fibers due to the removal of the hemicellulose layer on alkali treatment. Tensile properties of Thespesia fibers were compared to those of other important natural fibers, and it was indicated as an alternative suitable source for composite construction

    Tensile and thermal properties of poly(lactic acid)/eggshell powder composite films

    Get PDF
    Biodegradable composite films of poly(lactic acid) (PLA)=eggshell powder (ESP) were prepared by the composite film casting method using chloroform as the solvent. ESP was loaded in PLA in 1 to 5 wt.%. The films were subjected to tensile, FT-IR spectral, thermogravimetric, X-ray, and microscopic analyses. The tensile strength and modulus of the composite films were found to be higher than those of PLA and increased with ESP content up to 4 wt.% and then decreased. A reverse trend was observed in the case of percentage elongation at break. The X-ray diffractograms of the composite films indicated an increase in crystallinity with ESP content. The optical micrographs indicated uniform distribution of ESP particles in the composite films. However, the fractographs indicated agglomeration of ESP particles at 5 wt.% loading. The FT-IR spectra revealed no specific interactions between PLA and ESP. The thermal stability of the composite films increased with ESP content

    Preparation and properties of biodegradable spent tea leaf powder/poly(propylene carbonate) composite films

    Get PDF
    Abstract: The aim of the present work is to develop novel biobased lightweight material with improved tensile and thermal properties. Spent tea leaf powder (STLP) is used as a filler to improve the tensile and thermal properties of polypropylene carbonate (PPC). Tea is an important material of hotels and household and spent tea leaf forms a conjugal solid waste. Composite films are obtained by solution casting method. These films are characterized by Optical microscopy, scanning electron microscopy, Fourier transforms infrared spectroscopy, thermogravimetric analysis and tensile testing to examine the effect of filler content on the properties of the composites. The results have shown that composite films are having increased tensile strength due to enhanced interfacial adhesion between the filler and the matrix. In addition, the composite films have also exhibited higher thermal degradation temperatures compared to pure polypropylene carbonate. The morphology results indicate that there is a good interface interaction between STLP and PPC. Results of the study reveal STLP to be a promising green filler for polymer plastics
    • …
    corecore