129 research outputs found

    Cross-Talk Effects in the Uncertainty Estimation of Multiplexed Data Acquisition Systems

    Get PDF
    This paper deals with the analysis of multi-channel data-acquisition systems with the aim of identifying and combining the main uncertainty contributions according to the GUM framework. Particular attention has been paid towards cross-talk effect, which could be an important uncertainty contribution in multiplexed data-acquisition systems. The uncertainty analysis is described for three commercial data acquisition devices highlighting that cross-talk specifications are often not suitable for a reliable uncertainty estimation in operating conditions. For this reason, an experimental set-up has been arranged to fully characterize the inter-channel effects of the investigated devices. The obtained results have highlighted that a proper characterization of a data-acquisition system is effective in estimating the actual performance at the frequency of interest and in the operating conditions for the source resistance and the input-channel configuration. Eventually, a customized procedure has been proposed that is effective in correcting the cross-talk effects also in very severe conditions of inter-channel disturbance

    A Fiber Optical Sensor For Non–Contact Vibration Measurements

    Get PDF
    This paper describes an intensity based optical sensor for the evaluation of accelerations from non-contact displacement measurements. Plastic optical fibers are used to collect the reflected light from several points on the vibrating surface, allowing the reconstruction of the vibration distribution. Two compensation techniques to reduce systematic effects due to the target reflectivity are also described and compared: one is based on the spectral analysis of the received optical signal and the other takes advantage of a reference displacement sensor. Experimental results in real conditions during vibration tests have demonstrated the capability to measure sub-micrometer vibration amplitudes up to about 40 kHz

    Fibre probe for tumour laser thermotherapy with integrated temperature measuring capabilities

    Get PDF
    The development and preliminary characterisation of a novel fibre probe for laser thermotherapy of solid tumours are presented. The probe introduces two innovative features: the tailoring of the laser irradiation pattern to adapt it also for larger tumour applications, and the all-optical real time evaluation of the induced temperature increase. These features are simultaneously obtained by integrating in a single capillary tube a laser delivery fibre with properly micro-structured tip surface together with some fibre Bragg gratings. Preliminary validation examples in human liver phantoms have demonstrated the viability of the proposed approach for the development of a whole set of new probes for laser ablation in medical applications

    Development and Validation of an Algorithm for the Digitization of ECG Paper Images

    Get PDF
    The electrocardiogram (ECG) signal describes the heart’s electrical activity, allowing it to detect several health conditions, including cardiac system abnormalities and dysfunctions. Nowadays, most patient medical records are still paper-based, especially those made in past decades. The importance of collecting digitized ECGs is twofold: firstly, all medical applications can be easily implemented with an engineering approach if the ECGs are treated as signals; secondly, paper ECGs can deteriorate over time, therefore a correct evaluation of the patient’s clinical evolution is not always guaranteed. The goal of this paper is the realization of an automatic conversion algorithm from paper-based ECGs (images) to digital ECG signals. The algorithm involves a digitization process tested on an image set of 16 subjects, also with pathologies. The quantitative analysis of the digitization method is carried out by evaluating the repeatability and reproducibility of the algorithm. The digitization accuracy is evaluated both on the entire signal and on six ECG time parameters (R-R peak distance, QRS complex duration, QT interval, PQ interval, P-wave duration, and heart rate). Results demonstrate the algorithm efficiency has an average Pearson correlation coefficient of 0.94 and measurement errors of the ECG time parameters are always less than 1 mm. Due to the promising experimental results, the algorithm could be embedded into a graphical interface, becoming a measurement and collection tool for cardiologists

    On the use of temperature measurements as a Process Analytical Technology (PAT) for the monitoring of a pharmaceutical freeze-drying process

    Get PDF
    The measurement of product temperature is one of the methods that can be adopted, especially in the pharmaceutical industry, to monitor the freeze-drying process and to obtain the values of the process parameters required by mathematical models useful for in-line (or off-line) optimization. Either a contact or a contactless device and a simple algorithm based on a mathematical model of the process can be employed to obtain a PAT tool. This work deeply investigated the use of direct temperature measurement for process monitoring to determine not only the product temperature, but also the end of primary drying and the process parameters (heat and mass transfer coefficients), as well as evaluating the degree of uncertainty of the obtained results. Experiments were carried out with thin thermocouples in a lab-scale freeze-dryer using two different model products, sucrose and PVP solutions; they are representative of two types of commonly freeze-dried products, namely those whose structures are strongly nonuniform in the axial direction, showing a variable pore size with the cake depth and a crust (leading to a strongly nonlinear cake resistance), as well as those whose structures are uniform, with an open structure and, consequently, a cake resistance varying linearly with thickness. The results confirm that the model parameters in both cases can be estimated with an uncertainty that is in agreement with that obtained with other more invasive and expensive sensors. Finally, the strengths and weaknesses of the proposed approach coupled with the use of thermocouples was discussed, comparing with a case using a contactless device (infrared camera)

    In-field monitoring of eight photovoltaic plants: Degradation rate over seven years of continuous operation

    Get PDF
    The results of more than seven years (October 2010-December 2017) of continuous monitoring are presented in this paper that refer to eight outdoors PhotoVoltaic (PV) plants. The monitored plants are based on different technologies: mono-crystalline silicon (m-Si), poli-crystalline silicon (p-Si), string ribbon silicon, Copper Indium Gallium Selenide (CIGS) thin film and Cadmium Telluride (CdTe) thin film. Thin-film and m-Si modules are used both in fixed installation and on x-y tracking systems. The results are expressed in terms of degradation rate of the efficiency of each PV plant, which is estimated from the measurements provided by a multi-channel data-acquisition system that senses both electrical and environmental quantities. A comparison with the electrical characterization of each plant obtained by means of the transient charge of a capacitive load is also proposed. In addition, three of the monitored plants have been characterized at module level and the estimated degradation rates have been compared to the values obtained with the monitoring system. The main outcome of this work can be summarized in a higher degradation rate of thin-film based PV modules with respect to silicon-based PV modules

    Monitoring of the primary drying of a lyophilization process in vials

    Get PDF
    An innovative and modular system (LyoMonitor) for monitoring the primary drying of a lyophilization process in vials is illustrated: it integrates some commercial devices (pressure gauges, moisture sensor and mass spectrometer), an innovative balance and a manometric temperature measurement system based on an improved algorithm (DPE) to estimate sublimating interface temperature and position, product temperature profile, heat and mass transfer coefficients. A soft-sensor using a multipoint wireless thermometer can also estimate the previous parameters in a large number of vials. The performances of the previous devices for the determination of the end of the primary drying are compared. Finally, all these sensors can be used for control purposes and for the optimization of the process recipe; the use of DPE in a control loop will be shown as an exampl

    Long-Term Monitoring of Photovoltaic Plants

    Get PDF
    This paper deals with a data-acquisition system that has been specifically developed for a long-term monitoring of ten different photovoltaic plants. The main goals of the system consist in estimating the drift of the plant components, mainly photovoltaic modules and power inverters, and comparing the performance of the ten plants, which are based on different technologies and architectures. Owing to these goals, the traceabilityassurance of the obtained measurements is mandatory, hence the data-acquisition system has been designed to be easily calibrated and, if necessary, adjusted to compensate for measuring-chain drifts. In addition, the measurement uncertainty, which has to be suitable to distinguish the behaviour of the different PV plants, has to be stated for each of the estimated parameters. A brief description of the data-acquisition system is provided and its measurement capabilities are highlighted in terms of measured quantities and expected uncertainty. Results that refer to a period of thirty months are also reported
    corecore