136 research outputs found

    Mechanical properties of Pt monatomic chains

    Get PDF
    The mechanical properties of platinum monatomic chains were investigated by simultaneous measurement of an effective stiffness and the conductance using our newly developed mechanically controllable break junction (MCBJ) technique with a tuning fork as a force sensor. When stretching a monatomic contact (two-atom chain), the stiffness and conductance increases at the early stage of stretching and then decreases just before breaking, which is attributed to a transition of the chain configuration and bond weakening. A statistical analysis was made to investigate the mechanical properties of monatomic chains. The average stiffness shows minima at the peak positions of the length-histogram. From this result we conclude that the peaks in the length-histogram are a measure of the number of atoms in the chains, and that the chains break from a strained state. Additionally, we find that the smaller the initial stiffness of the chain is, the longer the chain becomes. This shows that softer chains can be stretched longer.Comment: 6 pages, 5 figure

    Захисні лісові насадження – важливий структурний елемент у формуванні національної екологічної мережі

    Get PDF
    Описано роль і значення захисних лісових насаджень як важливого структурного елементу при формуванні національної екологічної мережі.Описана роль и значение защитных лесных насаждений как важного структурного элемента при формировании национальной экологической сети.Role and meaning of forest protective stands as an important structural element for national ecological network formation is described

    Quantum logic gates for coupled superconducting phase qubits

    Full text link
    Based on a quantum analysis of two capacitively coupled current-biased Josephson junctions, we propose two fundamental two-qubit quantum logic gates. Each of these gates, when supplemented by single-qubit operations, is sufficient for universal quantum computation. Numerical solutions of the time-dependent Schroedinger equation demonstrate that these operations can be performed with good fidelity.Comment: 4 pages, 5 figures, revised for publicatio

    Electron transport in a quasi-one dimensional channel on suspended helium films

    Full text link
    Quasi-one dimensional electron systems have been created using a suspended helium film on a structured substrate. The electron mobility along the channel is calculated by taking into account the essential scattering processes of electrons by helium atoms in the vapor phase, ripplons, and surface defects of the film substrate. It is shown that the last scattering mechanism may dominate the electron mobility in the low temperature limit changing drastically the temperature dependence of the mobility in comparison with that controlled by the electron-ripplon scattering.Comment: 4 pages, 1 figur

    Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy

    Full text link
    We have studied the dynamics of quartz tuning fork resonators used in atomic force microscopy taking into account mechanical energy dissipation through the attachment of the tuning fork base. We find that the tuning fork resonator quality factor changes even for the case of a purely elastic sensor-sample interaction. This is due to the effective mechanical imbalance of the tuning fork prongs induced by the sensor-sample force gradient which in turn has an impact on the dissipation through the attachment of the resonator base. This effect may yield a measured dissipation signal that can be different to the one exclusively related to the dissipation between the sensor and the sample. We also find that there is a second order term in addition to the linear relationship between the sensor-sample force gradient and the resonance frequency shift of the tuning fork that is significant even for force gradients usually present in atomic force microscopy which are in the range of tens of N/m.Comment: 9 pages, 3 figures and supplemental informatio
    corecore