145,120 research outputs found

    First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties

    Full text link
    A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we review an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via "alchemical" interpolations involving fractional nuclear chargens in the electronic Hamiltonian. We address Taylor expansions in CCS, property non-linearity, improved predictions using reference compound pairs, and the ounce-of-gold prize challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. These relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schr\"odinger equation

    't Hooft-Polyakov monopoles in lattice SU(N)+adjoint Higgs theory

    Get PDF
    We investigate twisted C-periodic boundary conditions in SU(N) gauge field theory with an adjoint Higgs field. We show that with a suitable twist for even N one can impose a non-zero magnetic charge relative to residual U(1) gauge groups in the broken phase, thereby creating a 't Hooft-Polyakov magnetic monopole. This makes it possible to use lattice Monte-Carlo simulations to study the properties of these monopoles in the quantum theory.Comment: 15 pages, 6 figure

    On the emergence of Lorentzian signature and scalar gravity

    Full text link
    In recent years, a growing momentum has been gained by the emergent gravity framework. Within the latter, the very concepts of geometry and gravitational interaction are not seen as elementary aspects of Nature but rather as collective phenomena associated to the dynamics of more fundamental objects. In this paper we want to further explore this possibility by proposing a model of emergent Lorentzian signature and scalar gravity. Assuming that the dynamics of the fundamental objects can give rise in first place to a Riemannian manifold and a set of scalar fields we show how time (in the sense of hyperbolic equations) can emerge as a property of perturbations dynamics around some specific class of solutions of the field equations. Moreover, we show that these perturbations can give rise to a spin-0 gravity via a suitable redefinition of the fields that identifies the relevant degrees of freedom. In particular, we find that our model gives rise to Nordstrom gravity. Since this theory is invariant under general coordinate transformations, this also shows how diffeomorphism invariance (albeit of a weaker form than the one of general relativity) can emerge from much simpler systems.Comment: 10 pages, revtex4. Replaced with the published versio

    MEMO: A Method for Computing Metabolic Modules for Cell-Free Production Systems

    No full text

    Lambda and Lambda-bar Polarization in Lepton Induced Processes

    Full text link
    The study of the longitudinal polarization of Lambda and Lambda-bar hyperons produced in polarized deep inelastic scattering, neutrino scattering, and in Z0 decays allows to access the spin dynamics of the quark fragmentation process. Different phenomenological spin transfer mechanisms are considered and predictions for the Lambda and Lambda-bar longitudinal polarization in various processes using unpolarized and polarized targets are made. Current and future semi-inclusive deep inelastic scattering experiments will provide soon accurate enough data to study these phenomena and distinguish between various models for the spin transfer mechanisms.Comment: 17 pages, LaTex with epsfig.sty, including 10 figures One reference adde

    Gluon Polarization from Correlated High-p_T Hadron Pairs in Polarized l - N Scattering

    Full text link
    We propose to access the gluon polarization ΔG\Delta G by measuring the cross section spin-asymmetry in semi-inclusive polarized lepton -- nucleon scattering. The photon-gluon fusion sub-process will be tagged by detecting high-pTp_T correlated hadron pairs in the forward hemisphere. Selecting oppositely charged kaon pairs will allow to suppress the background coming from gluon radiation.Comment: 6 pages, 3 eps figures, aipproc.cls and aipproc.sty include

    Review article

    No full text
    In eukaryotic cells, the trans-Golgi network (TGN) serves as a platform for secretory cargo sorting and trafficking. In recent years, it has become evident that a complex network of lipid-lipid and lipid-protein interactions contributes to these key functions. This review addresses the role of lipids at the TGN with a particular emphasis on sphingolipids and diacylglycerol. We further highlight how these lipids couple secretory cargo sorting and trafficking for spatiotemporal coordination of protein transport to the plasma membrane

    Excitation Spectrum and Correlation Functions of the Z_3-Chiral Potts Quantum Spin Chain

    Get PDF
    We study the excitation spectrum and the correlation functions of the Z_3- chiral Potts model in the massive high-temperature phase using perturbation expansions and numerical diagonalization. We are mainly interested in results for general chiral angles but we consider also the superintegrable case. For the parameter values considered, we find that the band structure of the low- lying part of the excitation spectrum has the form expected from a quasiparticle picture with two fundamental particles. Studying the N-dependence of the spectrum, we confirm the stability of the second fundamental particle in a limited range of the momentum, even when its energy becomes so high that it lies very high up among the multiparticle scattering states. This is not a phenomenon restricted to the superintegrable line. Calculating a non-translationally invariant correlation function, we give evidence that it is oscillating. Within our numerical accuracy we find a relation between the oscillation length and the dip position of the momentum dispersion of the lightest particle which seems to be quite independent of the chiral angles.Comment: 19 pages + 6 PostScript figures (LaTeX); BONN-TH-94-2

    Low-Temperature Expansions and Correlation Functions of the Z_3-Chiral Potts Model

    Get PDF
    Using perturbative methods we derive new results for the spectrum and correlation functions of the general Z_3-chiral Potts quantum chain in the massive low-temperature phase. Explicit calculations of the ground state energy and the first excitations in the zero momentum sector give excellent approximations and confirm the general statement that the spectrum in the low-temperature phase of general Z_n-spin quantum chains is identical to one in the high-temperature phase where the role of charge and boundary conditions are interchanged. Using a perturbative expansion of the ground state for the Z_3 model we are able to gain some insight in correlation functions. We argue that they might be oscillating and give estimates for the oscillation length as well as the correlation length.Comment: 17 pages (Plain TeX), BONN-HE-93-1
    • …
    corecore