39 research outputs found

    Electrostatic Cancellation of Gravity Effects in Liquid Mixtures

    Full text link
    We point out that a spatially-varying electric field can be used to cancel the effect of gravity in liquid mixtures by coupling to the different components' permittivities. Cancellation occurs if the system under consideration is small enough. For a simple ``wedge'' electrode geometry we show that the required system size and voltage are practical, easily realizable in the Lab. Thus this setup might be a simple alternative to more expensive or hazardous options such as the space-shuttle, drop-tower, or magnetic levitation experiments.Comment: 1.5 pages, one figure. Accepted to PRE brief report

    The Nature of Asymmetry in Fluid Criticality

    Full text link
    By combining accurate liquid-vapor coexistence and heat-capacity data, we have unambiguously separated two non-analytical contributions of liquid-gas asymmetry in fluid criticality and proved the validity of "complete scaling" [Fisher et al., Phys. Rev. Lett. 85, 696 (2000); Phys. Rev. E, 67, 061506, (2003)]. We have also developed a method to obtain two scaling-field coefficients, responsible for the two sources of the asymmetry, from mean-field equations of state. Since the asymmetry effects are completely determined by Ising critical exponents, there is no need for a special renormalization-group theoretical treatment of asymmetric fluid criticality.Comment: 4 pages, 3 figure

    Asymmetric Fluid Criticality I: Scaling with Pressure Mixing

    Full text link
    The thermodynamic behavior of a fluid near a vapor-liquid and, hence, asymmetric critical point is discussed within a general ``complete'' scaling theory incorporating pressure mixing in the nonlinear scaling fields as well as corrections to scaling. This theory allows for a Yang-Yang anomaly in which \mu_{\sigma}^{\prime\prime}(T), the second temperature derivative of the chemical potential along the phase boundary, diverges like the specific heat when T\to T_{\scriptsize c}; it also generates a leading singular term, |t|^{2\beta}, in the coexistence curve diameter, where t\equiv (T-T_{\scriptsize c}) /T_{\scriptsize c}. The behavior of various special loci, such as the critical isochore, the critical isotherm, the k-inflection loci, on which \chi^{(k)}\equiv \chi(\rho,T)/\rho^{k} (with \chi = \rho^{2} k_{\scriptsize B}TK_{T}) and C_{V}^{(k)}\equiv C_{V}(\rho,T)/\rho^{k} are maximal at fixed T, is carefully elucidated. These results are useful for analyzing simulations and experiments, since particular, nonuniversal values of k specify loci that approach the critical density most rapidly and reflect the pressure-mixing coefficient. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte. For comparison, a discussion of the classical (or Landau) theory is presented briefly and various interesting loci are determined explicitly and illustrated quantitatively for a van der Waals fluid.Comment: 21 pages in two-column format including 8 figure

    A dynamic new look at the lambda transition

    Full text link

    Generic mechanism for generating a liquid-liquid phase transition

    Full text link
    Recent experimental results indicate that phosphorus, a single-component system, can have two liquid phases: a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including single-component systems such as water, silica and carbon. Molecular dynamics simulations of very specific models for supercooled water, liquid carbon and supercooled silica, predict a LDL-HDL critical point, but a coherent and general interpretation of the LDL-HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular liquid metals), and such potentials are often used to decribe systems that exhibit a density anomaly. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of the density anomaly.Comment: 5 pages, 3 ps Fig

    Metastable liquid-liquid phase transition in a single-component system with only one crystal phase and no density anomaly

    Get PDF
    We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature {\bf 409}, 692 (2001)] that, even with no evidences of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas--low-density liquid (LDL) critical point, and the other in a gas--high-density liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the 3-parameter space of the soft-core potential and we perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.Comment: 15 pages, 21 figure

    A Natural Supersymmetric Model with MeV Dark Matter

    Full text link
    It has previously been proposed that annihilating dark matter particles with MeV-scale masses could be responsible for the flux of 511 keV photons observed from the region of the Galactic Bulge. The conventional wisdom, however, is that it is very challenging to construct a viable particle physics model containing MeV dark matter. In this letter, we challenge this conclusion by describing a simple and natural supersymmetric model in which the lightest supersymmetric particle naturally has a MeV-scale mass and the other phenomenological properties required to generate the 511 keV emission. In particular, the small (∼\sim 10−510^{-5}) effective couplings between dark matter and the Standard Model fermions required in this scenario naturally lead to radiative corrections that generate MeV-scale masses for both the dark matter candidate and the mediator particle.Comment: 4 pages, 1 figure. v2: Small modification to discussion of spectru

    Critical Properties of Argon

    No full text
    corecore